-
Notifications
You must be signed in to change notification settings - Fork 58
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
12 changed files
with
695 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,175 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright 2023 ETH Zurich and University of Bologna. | ||
# Licensed under the Apache License, Version 2.0, see LICENSE for details. | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# | ||
# Viviane Potocnik <[email protected]> | ||
# Luca Colagrande <[email protected]> | ||
|
||
import argparse | ||
import numpy as np | ||
import pathlib | ||
import hjson | ||
import sys | ||
import os | ||
import torch | ||
|
||
sys.path.append(os.path.join(os.path.dirname(__file__), "../../../../util/sim/")) | ||
import data_utils # noqa: E402 | ||
from data_utils import emit_license, \ | ||
format_struct_definition, format_array_definition, \ | ||
format_array_declaration, format_ifdef_wrapper # noqa: E402 | ||
|
||
torch.manual_seed(42) | ||
|
||
# AXI splits bursts crossing 4KB address boundaries. To minimize | ||
# the occurrence of these splits the data should be aligned to 4KB | ||
BURST_ALIGNMENT = 4096 | ||
|
||
PRECISION = { | ||
'FP64': '64', | ||
'FP32': '32', | ||
'FP16': '16', | ||
'FP8': '8' | ||
} | ||
|
||
|
||
def torch_golden_model(Q, K, V): | ||
return torch.nn.functional.scaled_dot_product_attention(Q, K, V) | ||
|
||
|
||
def exact_golden_model(Q, K, V, B_r, B_c): | ||
# Convert torch tensors to numpy arrays | ||
Q = Q.numpy() | ||
K = K.numpy() | ||
V = V.numpy() | ||
# Get layer dimensions | ||
N = Q.shape[0] | ||
d = Q.shape[1] | ||
# Calculate tiling parameters | ||
T_r = N // B_r | ||
T_c = N // B_c | ||
# Transpose K | ||
K_t = np.transpose(K) | ||
# Iterate tiles | ||
O = [] | ||
for i in range(T_r): | ||
# Tile Q | ||
start_row = i * B_r | ||
end_row = start_row + B_r | ||
Q_i = Q[start_row:end_row,:] | ||
# Initialize l_i, m_i, O_i | ||
m_i = np.full((B_r, 1), -np.inf) | ||
for j in range(T_c): | ||
# Tile K_t and V | ||
start_col = j * B_c | ||
end_col = start_col + B_c | ||
K_t_j = K_t[:,start_col:end_col] | ||
V_j = V[start_col:end_col,] | ||
# Compute O tile update | ||
S_ij = np.matmul(Q_i, K_t_j) | ||
m_i_prev = m_i | ||
m_i = np.maximum(m_i_prev, np.max(S_ij, 1, keepdims=True)) | ||
shifted_exp = np.exp(m_i_prev - m_i) | ||
P_ij = np.exp(S_ij - m_i) | ||
if j == 0: | ||
l_i = np.sum(P_ij, 1, keepdims=True) | ||
O_i = np.matmul(P_ij, V_j) | ||
else: | ||
l_i = (shifted_exp * l_i) + np.sum(P_ij, 1, keepdims=True) | ||
diag = np.diag(shifted_exp[:, 0]) | ||
diag_inv = np.linalg.inv(diag) | ||
O_i = np.matmul(diag_inv, O_i) + np.matmul(P_ij, V_j) | ||
# Finalize O tile | ||
diag_l_i = np.diag(l_i[:, 0]) | ||
diag_l_inv_i = np.linalg.inv(diag_l_i) | ||
O_i = np.matmul(diag_l_inv_i, O_i) | ||
O.append(O_i) | ||
return np.concatenate(O, 0) | ||
|
||
|
||
def emit_header(section, params): | ||
batch_size = 1 | ||
N = params['N'] | ||
d = params['d'] | ||
B_r = params['B_r'] | ||
B_c = params['B_c'] | ||
prec = PRECISION[params['dtype']] | ||
|
||
# Verify layer parameters are valid | ||
assert (N % B_r) == 0, 'N is not an integer multiple of B_r' | ||
assert (N % B_c) == 0, 'N is not an integer multiple of B_c' | ||
assert (B_r % 8) == 0, 'B_r must be an integer multiple of the number of cores in a cluster' | ||
|
||
torch_type = data_utils.floating_point_torch_type(prec) | ||
|
||
Q = torch.rand(N, d, requires_grad=False, dtype=torch_type) | ||
K = torch.rand(N, d, requires_grad=False, dtype=torch_type) | ||
V = torch.rand(N, d, requires_grad=False, dtype=torch_type) | ||
|
||
O = exact_golden_model(Q, K, V, B_r, B_c) | ||
|
||
# Layer implementation assumes K is in (d, N) layout | ||
K = torch.transpose(K, 0, 1) | ||
|
||
ctype = data_utils.floating_point_ctype(prec) | ||
|
||
q_uid = 'Q' | ||
k_uid = 'K' | ||
v_uid = 'V' | ||
o_uid = 'O' | ||
|
||
layer_cfg = { | ||
**params, | ||
'Q': q_uid, | ||
'K': k_uid, | ||
'V': v_uid, | ||
'O': o_uid, | ||
} | ||
|
||
data_str = [emit_license()] | ||
data_str += [format_array_declaration(ctype, q_uid, Q.shape)] | ||
data_str += [format_array_declaration(ctype, k_uid, K.shape)] | ||
data_str += [format_array_declaration(ctype, v_uid, V.shape)] | ||
data_str += [format_array_declaration(ctype, o_uid, O.shape)] | ||
data_str += [format_struct_definition('flashattention_2_layer_t', 'layer', layer_cfg)] | ||
data_str += [format_array_definition(ctype, q_uid, Q)] | ||
data_str += [format_array_definition(ctype, k_uid, K)] | ||
data_str += [format_array_definition(ctype, v_uid, V)] | ||
result_def = format_array_definition(ctype, 'golden', O) | ||
data_str += [format_ifdef_wrapper('BIST', result_def)] | ||
data_str = '\n\n'.join(data_str) | ||
|
||
return data_str | ||
|
||
|
||
def main(): | ||
|
||
parser = argparse.ArgumentParser(description='Generate data for layernorm kernel') | ||
parser.add_argument( | ||
"-c", "--cfg", | ||
type=pathlib.Path, | ||
required=True, | ||
help='Select param config file kernel' | ||
) | ||
parser.add_argument( | ||
'--section', | ||
type=str, | ||
help='Section to store matrices in') | ||
parser.add_argument( | ||
'output', | ||
type=pathlib.Path, | ||
help='Path of the output header file') | ||
args = parser.parse_args() | ||
|
||
# Load param config file | ||
with args.cfg.open() as f: | ||
param = hjson.loads(f.read()) | ||
|
||
# Emit header file | ||
with open(args.output, 'w') as f: | ||
f.write(emit_header(args.section, param)) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
// Copyright 2020 ETH Zurich and University of Bologna. | ||
// Solderpad Hardware License, Version 0.51, see LICENSE for details. | ||
// SPDX-License-Identifier: SHL-0.51 | ||
|
||
{ | ||
N: 16 | ||
d: 16 | ||
B_r: 8 | ||
B_c: 8 | ||
dtype: FP64 | ||
} |
Oops, something went wrong.