forked from h2oai/driverlessai-recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
parallel_prophet_forecast.py
339 lines (291 loc) · 13.8 KB
/
parallel_prophet_forecast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
"""Parallel FB Prophet transformer is a time series transformer that predicts target using FBProphet models.
In this implementation, Time Group Models are fitted in parallel"""
import importlib
from h2oaicore.transformer_utils import CustomTimeSeriesTransformer
from h2oaicore.systemutils import (
small_job_pool, save_obj, load_obj, temporary_files_path, remove, max_threads, config
)
import datatable as dt
import numpy as np
import os
import uuid
import shutil
import random
import importlib
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from h2oaicore.systemutils import make_experiment_logger, loggerinfo, loggerwarning
# For more information about FB prophet please visit :
# This parallel implementation is faster than the serial implementation
# available in the repository.
# Standard implementation is therefore disabled.
class suppress_stdout_stderr(object):
def __init__(self):
self.null_fds = [os.open(os.devnull, os.O_RDWR) for x in range(2)]
self.save_fds = [os.dup(1), os.dup(2)]
def __enter__(self):
os.dup2(self.null_fds[0], 1)
os.dup2(self.null_fds[1], 2)
def __exit__(self, *_):
os.dup2(self.save_fds[0], 1)
os.dup2(self.save_fds[1], 2)
for fd in self.null_fds + self.save_fds:
os.close(fd)
# Parallel implementation requires methods being called from different processes
# Global methods support this feature
# We use global methods as a wrapper for member methods of the transformer
def MyParallelProphetTransformer_fit_async(*args, **kwargs):
return MyParallelProphetTransformer._fit_async(*args, **kwargs)
def MyParallelProphetTransformer_transform_async(*args, **kwargs):
return MyParallelProphetTransformer._transform_async(*args, **kwargs)
class MyParallelProphetTransformer(CustomTimeSeriesTransformer):
"""Implementation of the FB Prophet transformer using a pool of processes to fit models in parallel"""
_is_reproducible = True
_binary = False
_multiclass = False
# some package dependencies are best sequential to overcome known issues
_modules_needed_by_name = ['convertdate', 'pystan==2.18', 'fbprophet==0.4.post2']
# _modules_needed_by_name = ['fbprophet']
_included_model_classes = None # ["gblinear"] for strong trends - can extrapolate
@staticmethod
def get_default_properties():
return dict(col_type="time_column", min_cols=1, max_cols=1, relative_importance=1)
@staticmethod
def _fit_async(X_path, grp_hash, tmp_folder):
"""
Fits a FB Prophet model for a particular time group
:param X_path: Path to the data used to fit the FB Prophet model
:param grp_hash: Time group identifier
:return: time group identifier and path to the pickled model
"""
np.random.seed(1234)
random.seed(1234)
X = load_obj(X_path)
# Commented for performance, uncomment for debug
# print("prophet - fitting on data of shape: %s for group: %s" % (str(X.shape), grp_hash))
if X.shape[0] < 20:
# print("prophet - small data work-around for group: %s" % grp_hash)
return grp_hash, None
# Import FB Prophet package
mod = importlib.import_module('fbprophet')
Prophet = getattr(mod, "Prophet")
model = Prophet()
with suppress_stdout_stderr():
model.fit(X[['ds', 'y']])
model_path = os.path.join(tmp_folder, "fbprophet_model" + str(uuid.uuid4()))
save_obj(model, model_path)
remove(X_path) # remove to indicate success
return grp_hash, model_path
def _get_n_jobs(self, logger, **kwargs):
try:
if config.fixed_num_folds == 0:
n_jobs = max(1, int(int(max_threads() / min(config.num_folds, kwargs['max_workers']))))
else:
n_jobs = max(1, int(
int(max_threads() / min(config.fixed_num_folds, config.num_folds, kwargs['max_workers']))))
except KeyError:
loggerinfo(logger, "Prophet No Max Worker in kwargs. Set n_jobs to 1")
n_jobs = 1
return n_jobs
def _clean_tmp_folder(self, logger, tmp_folder):
try:
shutil.rmtree(tmp_folder)
loggerinfo(logger, "Prophet cleaned up temporary file folder.")
except:
loggerwarning(logger, "Prophet could not delete the temporary file folder.")
def _create_tmp_folder(self, logger):
# Create a temp folder to store files used during multi processing experiment
# This temp folder will be removed at the end of the process
# Set the default value without context available (required to pass acceptance test
tmp_folder = os.path.join(temporary_files_path, "%s_prophet_folder" % uuid.uuid4())
# Make a real tmp folder when experiment is available
if self.context and self.context.experiment_id:
tmp_folder = os.path.join(self.context.experiment_tmp_dir, "%s_prophet_folder" % uuid.uuid4())
# Now let's try to create that folder
try:
os.mkdir(tmp_folder)
except PermissionError:
# This not occur so log a warning
loggerwarning(logger, "Prophet was denied temp folder creation rights")
tmp_folder = os.path.join(temporary_files_path, "%s_prophet_folder" % uuid.uuid4())
os.mkdir(tmp_folder)
except FileExistsError:
# We should never be here since temp dir name is expected to be unique
loggerwarning(logger, "Prophet temp folder already exists")
tmp_folder = os.path.join(self.context.experiment_tmp_dir, "%s_prophet_folder" % uuid.uuid4())
os.mkdir(tmp_folder)
except:
# Revert to temporary file path
tmp_folder = os.path.join(temporary_files_path, "%s_prophet_folder" % uuid.uuid4())
os.mkdir(tmp_folder)
loggerinfo(logger, "Prophet temp folder {}".format(tmp_folder))
return tmp_folder
def fit(self, X: dt.Frame, y: np.array = None, **kwargs):
"""
Fits FB Prophet models (1 per time group) using historical target values contained in y
Model fitting is distributed over a pool of processes and uses file storage to share the data with workers
:param X: Datatable frame containing the features
:param y: numpy array containing the historical values of the target
:return: self
"""
# Get the logger if it exists
logger = None
if self.context and self.context.experiment_id:
logger = make_experiment_logger(
experiment_id=self.context.experiment_id,
tmp_dir=self.context.tmp_dir,
experiment_tmp_dir=self.context.experiment_tmp_dir
)
tmp_folder = self._create_tmp_folder(logger)
n_jobs = self._get_n_jobs(logger, **kwargs)
# Convert to pandas
XX = X[:, self.tgc].to_pandas()
XX = XX.replace([None, np.nan], 0)
XX.rename(columns={self.time_column: "ds"}, inplace=True)
# Make sure labales are numeric
if self.labels is not None:
y = LabelEncoder().fit(self.labels).transform(y)
XX['y'] = np.array(y)
# Set target prior
self.nan_value = np.mean(y)
# Group the input by TGC (Time group column) excluding the time column itself
tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
if len(tgc_wo_time) > 0:
XX_grp = XX.groupby(tgc_wo_time)
else:
XX_grp = [([None], XX)]
self.models = {}
self.priors = {}
# Prepare for multi processing
num_tasks = len(XX_grp)
def processor(out, res):
out[res[0]] = res[1]
pool_to_use = small_job_pool
loggerinfo(logger, "Prophet will use {} workers for fitting".format(n_jobs))
pool = pool_to_use(
logger=None, processor=processor,
num_tasks=num_tasks, max_workers=n_jobs
)
# Fit 1 FB Prophet model per time group columns
nb_groups = len(XX_grp)
for _i_g, (key, X) in enumerate(XX_grp):
# Just log where we are in the fitting process
if (_i_g + 1) % max(1, nb_groups // 20) == 0:
loggerinfo(logger, "FB Prophet : %d%% of groups fitted" % (100 * (_i_g + 1) // nb_groups))
X_path = os.path.join(tmp_folder, "fbprophet_X" + str(uuid.uuid4()))
X = X.reset_index(drop=True)
save_obj(X, X_path)
key = key if isinstance(key, list) else [key]
grp_hash = '_'.join(map(str, key))
self.priors[grp_hash] = X['y'].mean()
args = (X_path, grp_hash, tmp_folder)
kwargs = {}
pool.submit_tryget(None, MyParallelProphetTransformer_fit_async, args=args, kwargs=kwargs, out=self.models)
pool.finish()
for k, v in self.models.items():
self.models[k] = load_obj(v) if v is not None else None
remove(v)
self._clean_tmp_folder(logger, tmp_folder)
return self
@staticmethod
def _transform_async(model_path, X_path, nan_value, tmp_folder):
"""
Predicts target for a particular time group
:param model_path: path to the stored model
:param X_path: Path to the data used to fit the FB Prophet model
:param nan_value: Value of target prior, used when no fitted model has been found
:return: self
"""
model = load_obj(model_path)
XX_path = os.path.join(tmp_folder, "fbprophet_XXt" + str(uuid.uuid4()))
X = load_obj(X_path)
# Facebook Prophet returns the predictions ordered by time
# So we should keep track of the time order for each group so that
# predictions are ordered the same as the imput frame
# Keep track of the order
order = np.argsort(pd.to_datetime(X["ds"]))
if model is not None:
# Run prophet
yhat = model.predict(X)['yhat'].values
XX = pd.DataFrame(yhat, columns=['yhat'])
else:
XX = pd.DataFrame(np.full((X.shape[0], 1), nan_value), columns=['yhat']) # invalid models
XX.index = X.index[order]
assert XX.shape[1] == 1
save_obj(XX, XX_path)
remove(model_path) # indicates success, no longer need
remove(X_path) # indicates success, no longer need
return XX_path
def transform(self, X: dt.Frame, **kwargs):
"""
Uses fitted models (1 per time group) to predict the target
:param X: Datatable Frame containing the features
:return: FB Prophet predictions
"""
# Get the logger if it exists
logger = None
if self.context and self.context.experiment_id:
logger = make_experiment_logger(
experiment_id=self.context.experiment_id,
tmp_dir=self.context.tmp_dir,
experiment_tmp_dir=self.context.experiment_tmp_dir
)
tmp_folder = self._create_tmp_folder(logger)
n_jobs = self._get_n_jobs(logger, **kwargs)
XX = X[:, self.tgc].to_pandas()
XX = XX.replace([None, np.nan], 0)
XX.rename(columns={self.time_column: "ds"}, inplace=True)
tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
if len(tgc_wo_time) > 0:
XX_grp = XX.groupby(tgc_wo_time)
else:
XX_grp = [([None], XX)]
assert len(XX_grp) > 0
num_tasks = len(XX_grp)
def processor(out, res):
out.append(res)
pool_to_use = small_job_pool
loggerinfo(logger, "Prophet will use {} workers for transform".format(n_jobs))
pool = pool_to_use(logger=None, processor=processor, num_tasks=num_tasks, max_workers=n_jobs)
XX_paths = []
model_paths = []
nb_groups = len(XX_grp)
print("Nb Groups = ", nb_groups)
for _i_g, (key, X) in enumerate(XX_grp):
# Log where we are in the transformation of the dataset
if (_i_g + 1) % max(1, nb_groups // 20) == 0:
loggerinfo(logger, "FB Prophet : %d%% of groups transformed" % (100 * (_i_g + 1) // nb_groups))
key = key if isinstance(key, list) else [key]
grp_hash = '_'.join(map(str, key))
X_path = os.path.join(tmp_folder, "fbprophet_Xt" + str(uuid.uuid4()))
# Commented for performance, uncomment for debug
# print("prophet - transforming data of shape: %s for group: %s" % (str(X.shape), grp_hash))
if grp_hash in self.models:
model = self.models[grp_hash]
model_path = os.path.join(tmp_folder, "fbprophet_modelt" + str(uuid.uuid4()))
save_obj(model, model_path)
save_obj(X, X_path)
model_paths.append(model_path)
args = (model_path, X_path, self.priors[grp_hash], tmp_folder)
kwargs = {}
pool.submit_tryget(None, MyParallelProphetTransformer_transform_async, args=args, kwargs=kwargs,
out=XX_paths)
else:
XX = pd.DataFrame(np.full((X.shape[0], 1), self.nan_value), columns=['yhat']) # unseen groups
XX.index = X.index
save_obj(XX, X_path)
XX_paths.append(X_path)
pool.finish()
XX = pd.concat((load_obj(XX_path) for XX_path in XX_paths), axis=0).sort_index()
for p in XX_paths + model_paths:
remove(p)
self._clean_tmp_folder(logger, tmp_folder)
return XX
def fit_transform(self, X: dt.Frame, y: np.array = None, **kwargs):
"""
Fits the FB Prophet models (1 per time group) and outputs the corresponding predictions
:param X: Datatable Frame
:param y: Target to be used to fit FB Prophet models
:return: FB Prophet predictions
"""
return self.fit(X, y, **kwargs).transform(X, **kwargs)