forked from wala/ML
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Investigate decorator issue on tutorial code (#68)
* Add tutorial test case. * Add test case. This time with the decorator.
- Loading branch information
Showing
3 changed files
with
333 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
165 changes: 165 additions & 0 deletions
165
com.ibm.wala.cast.python.test/data/tensorflow_gan_tutorial.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
# From: https://github.com/ponder-lab/samples/blob/39f7644391e664244b45c90868c804abad923eb3/tensorflow_gan_tutorial/tensorflow_gan_tutorial.py | ||
|
||
#!/usr/bin/env python | ||
|
||
import os | ||
import time | ||
import random | ||
import matplotlib.pyplot as plt | ||
|
||
import numpy as np | ||
import tensorflow as tf | ||
|
||
|
||
def make_generator_model(): | ||
input_node = tf.keras.Input((100,)) | ||
x = input_node | ||
x = tf.keras.layers.Dense(7 * 7 * 256, use_bias=False)(x) | ||
x = tf.keras.layers.BatchNormalization()(x) | ||
x = tf.keras.layers.LeakyReLU()(x) | ||
x = tf.keras.layers.Reshape((7, 7, 256))(x) | ||
x = tf.keras.layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding="same", use_bias=False)(x) | ||
x = tf.keras.layers.BatchNormalization()(x) | ||
x = tf.keras.layers.LeakyReLU()(x) | ||
x = tf.keras.layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding="same", use_bias=False)(x) | ||
x = tf.keras.layers.BatchNormalization()(x) | ||
x = tf.keras.layers.LeakyReLU()(x) | ||
x = tf.keras.layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding="same", use_bias=False)(x) | ||
output_node = x | ||
|
||
return tf.keras.models.Model(input_node, output_node) | ||
|
||
|
||
def make_discriminator_model(): | ||
input_node = tf.keras.Input((28, 28, 1)) | ||
x = input_node | ||
x = tf.keras.layers.Conv2D(64, (5, 5), strides=(2, 2), padding="same")(x) | ||
x = tf.keras.layers.LeakyReLU()(x) | ||
x = tf.keras.layers.Dropout(0.3)(x) | ||
x = tf.keras.layers.Conv2D(128, (5, 5), strides=(2, 2), padding="same")(x) | ||
x = tf.keras.layers.LeakyReLU()(x) | ||
x = tf.keras.layers.Dropout(0.3)(x) | ||
x = tf.keras.layers.Flatten()(x) | ||
x = tf.keras.layers.Dense(1)(x) | ||
output_node = x | ||
|
||
return tf.keras.models.Model(input_node, output_node) | ||
|
||
|
||
CROSS_ENTROPY = tf.keras.losses.BinaryCrossentropy(from_logits=True) | ||
|
||
|
||
def discriminator_loss(real_output, fake_output): | ||
real_loss = CROSS_ENTROPY(tf.ones_like(real_output), real_output) | ||
fake_loss = CROSS_ENTROPY(tf.zeros_like(fake_output), fake_output) | ||
total_loss = real_loss + fake_loss | ||
return total_loss | ||
|
||
|
||
def generator_loss(fake_output): | ||
return CROSS_ENTROPY(tf.ones_like(fake_output), fake_output) | ||
|
||
|
||
def train_step(images, generator, discriminator, generator_optimizer, discriminator_optimizer): | ||
noise = tf.random.normal([images.shape[0], noise_dim]) | ||
|
||
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: | ||
generated_images = generator(noise, training=True) | ||
|
||
real_output = discriminator(images, training=True) | ||
fake_output = discriminator(generated_images, training=True) | ||
|
||
gen_loss = generator_loss(fake_output) | ||
disc_loss = discriminator_loss(real_output, fake_output) | ||
|
||
gen_grads = gen_tape.gradient(gen_loss, generator.trainable_variables) | ||
disc_grads = disc_tape.gradient(disc_loss, discriminator.trainable_variables) | ||
|
||
generator_optimizer.apply_gradients(zip(gen_grads, generator.trainable_variables)) | ||
discriminator_optimizer.apply_gradients(zip(disc_grads, discriminator.trainable_variables)) | ||
|
||
|
||
def train(dataset, epochs, checkpoint, generator, discriminator, | ||
generator_optimizer, discriminator_optimizer, seed): | ||
# for epoch in range(epochs, epochs*2): | ||
for epoch in range(epochs): | ||
start = time.time() | ||
|
||
for image_batch in dataset: | ||
train_step(image_batch, generator, discriminator, | ||
generator_optimizer, discriminator_optimizer) | ||
|
||
generate_and_save_images(generator, epoch + 1, seed) | ||
|
||
if (epoch + 1) % 15 == 0: | ||
checkpoint_dir = "./training_checkpoints" | ||
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") | ||
checkpoint.save(file_prefix=checkpoint_prefix) | ||
|
||
print("Time for epoch {} is {} sec".format(epoch + 1, time.time() - start)) | ||
|
||
generate_and_save_images(generator, epochs, seed) | ||
|
||
|
||
def generate_and_save_images(model, epoch, test_input): | ||
predictions = model(test_input, training=False) | ||
|
||
fig = plt.figure(figsize=(4, 4)) | ||
|
||
for i in range(predictions.shape[0]): | ||
plt.subplot(4, 4, i + 1) | ||
plt.imshow(predictions[i, ..., 0] * 127.5 + 127.5, cmap="gray") | ||
plt.axis("off") | ||
|
||
plt.savefig("image_at_epoch_{:04d}.png".format(epoch)) | ||
plt.close() | ||
|
||
|
||
random.seed(0) | ||
np.random.seed(0) | ||
tf.random.set_seed(0) | ||
|
||
(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data() | ||
|
||
train_images = train_images[..., None].astype(np.float32) | ||
train_images = (train_images - 127.5) / 127.5 | ||
|
||
buffer_size = train_images.shape[0] | ||
batch_size = 256 | ||
|
||
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(buffer_size).batch(batch_size) | ||
|
||
generator = make_generator_model(); | ||
# generator.summary() | ||
|
||
# noise = tf.random.normal([1, 100]) | ||
# generated_image = generator(noise, training=False) | ||
|
||
# plt.imshow(generated_image[0, ..., 0], cmap="gray") | ||
# plt.show() | ||
|
||
discriminator = make_discriminator_model() | ||
# discriminator.summary() | ||
|
||
# decision = discriminator(generated_image) | ||
# print(decision) | ||
|
||
generator_optimizer = tf.keras.optimizers.Adam(1e-4) | ||
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4) | ||
|
||
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer, | ||
discriminator_optimizer=discriminator_optimizer, | ||
generator=generator, | ||
discriminator=discriminator) | ||
|
||
# checkpoint_dir = "./training_checkpoints" | ||
# checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir)) | ||
|
||
epochs = 50 | ||
noise_dim = 100 | ||
num_examples_to_generate = 16 | ||
|
||
seed = tf.random.normal([num_examples_to_generate, noise_dim]) | ||
|
||
train(train_dataset, epochs, checkpoint, generator, discriminator, | ||
generator_optimizer, discriminator_optimizer, seed) |
166 changes: 166 additions & 0 deletions
166
com.ibm.wala.cast.python.test/data/tensorflow_gan_tutorial2.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,166 @@ | ||
# From: https://github.com/ponder-lab/samples/blob/39f7644391e664244b45c90868c804abad923eb3/tensorflow_gan_tutorial/tensorflow_gan_tutorial.py | ||
|
||
#!/usr/bin/env python | ||
|
||
import os | ||
import time | ||
import random | ||
import matplotlib.pyplot as plt | ||
|
||
import numpy as np | ||
import tensorflow as tf | ||
|
||
|
||
def make_generator_model(): | ||
input_node = tf.keras.Input((100,)) | ||
x = input_node | ||
x = tf.keras.layers.Dense(7 * 7 * 256, use_bias=False)(x) | ||
x = tf.keras.layers.BatchNormalization()(x) | ||
x = tf.keras.layers.LeakyReLU()(x) | ||
x = tf.keras.layers.Reshape((7, 7, 256))(x) | ||
x = tf.keras.layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding="same", use_bias=False)(x) | ||
x = tf.keras.layers.BatchNormalization()(x) | ||
x = tf.keras.layers.LeakyReLU()(x) | ||
x = tf.keras.layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding="same", use_bias=False)(x) | ||
x = tf.keras.layers.BatchNormalization()(x) | ||
x = tf.keras.layers.LeakyReLU()(x) | ||
x = tf.keras.layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding="same", use_bias=False)(x) | ||
output_node = x | ||
|
||
return tf.keras.models.Model(input_node, output_node) | ||
|
||
|
||
def make_discriminator_model(): | ||
input_node = tf.keras.Input((28, 28, 1)) | ||
x = input_node | ||
x = tf.keras.layers.Conv2D(64, (5, 5), strides=(2, 2), padding="same")(x) | ||
x = tf.keras.layers.LeakyReLU()(x) | ||
x = tf.keras.layers.Dropout(0.3)(x) | ||
x = tf.keras.layers.Conv2D(128, (5, 5), strides=(2, 2), padding="same")(x) | ||
x = tf.keras.layers.LeakyReLU()(x) | ||
x = tf.keras.layers.Dropout(0.3)(x) | ||
x = tf.keras.layers.Flatten()(x) | ||
x = tf.keras.layers.Dense(1)(x) | ||
output_node = x | ||
|
||
return tf.keras.models.Model(input_node, output_node) | ||
|
||
|
||
CROSS_ENTROPY = tf.keras.losses.BinaryCrossentropy(from_logits=True) | ||
|
||
|
||
def discriminator_loss(real_output, fake_output): | ||
real_loss = CROSS_ENTROPY(tf.ones_like(real_output), real_output) | ||
fake_loss = CROSS_ENTROPY(tf.zeros_like(fake_output), fake_output) | ||
total_loss = real_loss + fake_loss | ||
return total_loss | ||
|
||
|
||
def generator_loss(fake_output): | ||
return CROSS_ENTROPY(tf.ones_like(fake_output), fake_output) | ||
|
||
|
||
@tf.function | ||
def train_step(images, generator, discriminator, generator_optimizer, discriminator_optimizer): | ||
noise = tf.random.normal([images.shape[0], noise_dim]) | ||
|
||
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: | ||
generated_images = generator(noise, training=True) | ||
|
||
real_output = discriminator(images, training=True) | ||
fake_output = discriminator(generated_images, training=True) | ||
|
||
gen_loss = generator_loss(fake_output) | ||
disc_loss = discriminator_loss(real_output, fake_output) | ||
|
||
gen_grads = gen_tape.gradient(gen_loss, generator.trainable_variables) | ||
disc_grads = disc_tape.gradient(disc_loss, discriminator.trainable_variables) | ||
|
||
generator_optimizer.apply_gradients(zip(gen_grads, generator.trainable_variables)) | ||
discriminator_optimizer.apply_gradients(zip(disc_grads, discriminator.trainable_variables)) | ||
|
||
|
||
def train(dataset, epochs, checkpoint, generator, discriminator, | ||
generator_optimizer, discriminator_optimizer, seed): | ||
# for epoch in range(epochs, epochs*2): | ||
for epoch in range(epochs): | ||
start = time.time() | ||
|
||
for image_batch in dataset: | ||
train_step(image_batch, generator, discriminator, | ||
generator_optimizer, discriminator_optimizer) | ||
|
||
generate_and_save_images(generator, epoch + 1, seed) | ||
|
||
if (epoch + 1) % 15 == 0: | ||
checkpoint_dir = "./training_checkpoints" | ||
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") | ||
checkpoint.save(file_prefix=checkpoint_prefix) | ||
|
||
print("Time for epoch {} is {} sec".format(epoch + 1, time.time() - start)) | ||
|
||
generate_and_save_images(generator, epochs, seed) | ||
|
||
|
||
def generate_and_save_images(model, epoch, test_input): | ||
predictions = model(test_input, training=False) | ||
|
||
fig = plt.figure(figsize=(4, 4)) | ||
|
||
for i in range(predictions.shape[0]): | ||
plt.subplot(4, 4, i + 1) | ||
plt.imshow(predictions[i, ..., 0] * 127.5 + 127.5, cmap="gray") | ||
plt.axis("off") | ||
|
||
plt.savefig("image_at_epoch_{:04d}.png".format(epoch)) | ||
plt.close() | ||
|
||
|
||
random.seed(0) | ||
np.random.seed(0) | ||
tf.random.set_seed(0) | ||
|
||
(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data() | ||
|
||
train_images = train_images[..., None].astype(np.float32) | ||
train_images = (train_images - 127.5) / 127.5 | ||
|
||
buffer_size = train_images.shape[0] | ||
batch_size = 256 | ||
|
||
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(buffer_size).batch(batch_size) | ||
|
||
generator = make_generator_model(); | ||
# generator.summary() | ||
|
||
# noise = tf.random.normal([1, 100]) | ||
# generated_image = generator(noise, training=False) | ||
|
||
# plt.imshow(generated_image[0, ..., 0], cmap="gray") | ||
# plt.show() | ||
|
||
discriminator = make_discriminator_model() | ||
# discriminator.summary() | ||
|
||
# decision = discriminator(generated_image) | ||
# print(decision) | ||
|
||
generator_optimizer = tf.keras.optimizers.Adam(1e-4) | ||
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4) | ||
|
||
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer, | ||
discriminator_optimizer=discriminator_optimizer, | ||
generator=generator, | ||
discriminator=discriminator) | ||
|
||
# checkpoint_dir = "./training_checkpoints" | ||
# checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir)) | ||
|
||
epochs = 50 | ||
noise_dim = 100 | ||
num_examples_to_generate = 16 | ||
|
||
seed = tf.random.normal([num_examples_to_generate, noise_dim]) | ||
|
||
train(train_dataset, epochs, checkpoint, generator, discriminator, | ||
generator_optimizer, discriminator_optimizer, seed) |