Skip to content

oscar0812/pyfinviz

Repository files navigation

PyFinviz

Downloads Downloads

A python package that scrapes data from finviz.com and utilizes the pandas module. This package uses a fixed set of parameter options so you don't have to memorize them.

Install

pip install pyfinviz

Usage

News

Information from https://finviz.com/news.ashx. Uses view options (MARKET_NEWS, )

from pyfinviz.news import News

news = News() # by default scrap the Market News view

# available variables:
print(news.main_url)  # scraped URL
print(news.soup)  # beautiful soup object
print(news.news_df)  # NEWS table information in a pd.DataFrame object
print(news.blogs_df)  # BLOGS table information in a pd.DataFrame object

# all news page's views are also available by specifying the view_option value, please note that while
# all view_option will populate a news_df attribute, only News.ViewOption.MARKET_NEWS will populate 
# the blogs_df attribute. Available view options parameter values are:
# - News.ViewOption.MARKET_NEWS 
# - News.ViewOption.STOCKS_NEWS
# - News.ViewOption.ETF_NEWS
# - News.ViewOption.CRYPTO_NEWS
news = News(view_option = News.ViewOption.ETF_NEWS)
print(news.news_df)  # NEWS table information in a pd.DataFrame object

Crypto

Information from https://finviz.com/crypto_performance.ashx. Uses relative performance options (D, W, M, MTD, Q, HY, Y, YTD)

from pyfinviz.crypto import Crypto

# with no params (SECTOR, OVERVIEW by default)
crypto = Crypto()
# with params
crypto = Crypto(relative_performance_option=Crypto.RelativePerformanceOption.ONE_YEAR)

# available variables:
print(crypto.main_url)  # scraped URL
print(crypto.soup)  # beautiful soup object
print(crypto.table_df)  # table information in a pd.DataFrame object

Groups

Information from https://finviz.com/groups.ashx. Uses group options (Sector, Industry..., Capitalization) and view options (Overview, Valuation, Performance, Custom)

from pyfinviz.groups import Groups

# with no params (sector overview)
groups = Groups()
# with params (View the group VALUATION of the INDUSTRY sector)
groups = Groups(group_option=Groups.GroupOption.INDUSTRY, view_option=Groups.ViewOption.VALUATION)
# with params (View the group PERFORMANCE of the TECH sector)
groups = Groups(group_option=Groups.GroupOption.INDUSTRY_TECHNOLOGY,
                view_option=Groups.ViewOption.PERFORMANCE)

# available variables:
print(groups.main_url)  # scraped URL
print(groups.soup)  # beautiful soup object
print(groups.table_df)  # table information in a pd.DataFrame object

Insider

Information from https://finviz.com/insidertrading.ashx. Uses filter options (BUY, SELL, ALL) and view options (LATEST, TOP_INSIDER_TRADING_RECENT_WEEK, ...)

from pyfinviz.insider import Insider

# with no params (ALL the LATEST insider trades)
insider = Insider()
# with params (the LATEST BUY insider trades)
insider = Insider(filter_option=Insider.FilterOption.BUY)

# available variables:
print(insider.main_url)  # scraped URL
print(insider.soup)  # beautiful soup object
print(insider.table_df)  # table information in a pd.DataFrame object

Quote

Information from https://finviz.com/quote.ashx. The Quote class grabs all the information, creates an object and returns it. Variable names that end in _df are pd.DataFrame objects.

from pyfinviz.quote import Quote

quote = Quote(ticker="AMZN")

# available variables:
print(quote.exists)  # check if fetch was successful (STOCK may not exist)
print(quote.ticker)  # AMZN
print(quote.exchange)  # NASD
print(quote.company_name)  # Amazon.com, Inc.
print(quote.sectors)  # ['Consumer Cyclical', 'Internet Retail', 'USA']
print(quote.fundamental_df)  # Index    P/E EPS (ttm) Insider Own  ...  SMA50  SMA200     Volume  Change
print(quote.outer_ratings_df)  # 0   Nov-04-20     Upgrade  ...                Hold → Buy  $3360 → $4000
print(quote.outer_news_df)  # 0   Jan-04-21 10:20PM  ...                   Bloomberg
print(quote.income_statement_df)  # 1      12/31/2019  ...                    22.99206
print(quote.insider_trading_df)  # 0         WILKE JEFFREY A  ...  http://www.sec.gov/Archives/edgar/data/1018724...
print(quote.reuters_income_statement_df) #Available only for elite

Screener

Information from https://finviz.com/screener.ashx?ft=4. The Screener class uses ALL the options (dropdowns) in the webpage mentioned in the last sentence (over 60), and uses view options (OVERVIEW, VALUATION, ..., CUSTOM). Added signals filter too. You can also specify a range of pages to fetch.

Returns an empty dataframe if there are no results.

from pyfinviz.screener import Screener

# with no params (default screener table)
screener = Screener()
# with params (The first 3 pages of "STOCKS ONLY" where Analyst recommend a strong buy)
options = [Screener.IndustryOption.STOCKS_ONLY_EX_FUNDS, Screener.AnalystRecomOption.STRONG_BUY_1]

screener = Screener(filter_options=options, view_option=Screener.ViewOption.VALUATION,
                    pages=[x for x in range(1, 4)])

# available variables:
print(screener.main_url)  # scraped URL
print(screener.soups)  # beautiful soup object per page {1: soup, 2: soup, ...}
print(screener.data_frames)  # table information in a pd.DataFrame object per page {1: table_df, 2, table_df, ...}

Webpage from previous fetch: picture alt

pandas output:

    No Ticker MarketCap     PE  ... Salespast5Y   Price  Change     Volume
0    1   ACIW     4.43B  75.21  ...       4.40%   38.43  -0.16%    608,554
1    2   ACRS   276.59M      -  ...           -    6.47  -2.27%    373,915
2    3    ACU    97.02M  14.92  ...       5.80%   30.13  -2.43%     13,524
3    4    ADC     3.67B  36.03  ...      28.50%   66.58   1.49%    315,917
4    5   ADUS     1.85B  53.79  ...      15.70%  117.09   0.92%     61,737
5    6   AESE    48.74M      -  ...           -    1.58   0.64%  1,009,212
6    7   AEYE   259.33M      -  ...      83.10%   25.83  -5.00%     41,683
7    8    AFT   224.25M      -  ...           -   14.40   0.49%     43,953
8    9   AGEN   620.70M      -  ...      84.70%    3.18  -3.34%  1,340,472
9   10    AGM   785.57M   9.02  ...      21.80%   74.25   0.16%     30,179
10  11   AHCO     3.39B      -  ...           -   37.56  -0.82%    450,352
11  12   AKUS   735.30M      -  ...           -   19.83   4.04%     85,960
12  13   ALBO   710.06M      -  ...           -   37.51  -1.81%    258,926
13  14    ALG     1.64B  28.10  ...       5.90%  137.95   1.27%     25,093
14  15   ALPN   299.00M      -  ...           -   12.60   0.32%    166,333
15  16   ALRN    43.44M      -  ...           -    1.04  -4.59%  1,071,395
16  17   AMRK   182.88M   3.48  ...      -2.10%   25.65   0.31%    119,102
17  18  AMSWA   559.23M  85.85  ...       2.30%   17.17   0.94%     67,980
18  19   AMTI     1.07B      -  ...           -   30.77  -8.31%     70,411
19  20   ANIK   656.72M      -  ...       1.70%   45.26   1.05%     79,476
0   21    APT   155.99M   7.69  ...      -0.40%   11.15  -1.24%  1,148,691
1   22   AQMS   172.56M      -  ...           -    3.00  -1.64%  2,168,579
2   23   ARAY   378.01M  27.80  ...       0.20%    4.17  -0.48%    621,424
3   24   ARDC   327.45M      -  ...           -   14.29   0.07%     70,648
4   25   ARDX   588.96M      -  ...     -30.10%    6.47  -3.86%    323,062
5   26   ASND     9.02B      -  ...      -0.90%  166.78  -2.00%     74,233
6   27    ASX    12.11B  14.67  ...           -    5.84  -0.85%    439,892
7   28   ATEN   776.87M  78.88  ...       3.40%    9.86   0.41%    357,503
8   29   ATHA     1.21B      -  ...           -   34.25   4.90%    129,947
9   30   ATNI   657.72M      -  ...       5.50%   41.76  -0.33%     25,380
10  31   ATRC     2.50B      -  ...      16.50%   55.67   1.51%    244,269
11  32   ATRS   663.26M  70.00  ...      36.10%    3.99  -0.99%    812,128
12  33   AUVI    36.63M      -  ...           -    4.59  -6.52%    181,841
13  34   AVDL   395.06M      -  ...      31.60%    6.68  -0.15%    692,233
14  35   AVEO   169.35M      -  ...       9.70%    5.77   0.87%    218,677
15  36    AVO     1.03B  29.74  ...           -   15.05   0.07%    129,926
16  37    AWH   687.64M      -  ...      12.50%    6.71   5.84%    601,774
17  38   AYTU   104.65M      -  ...     153.90%    5.98  -0.99%    611,093
18  39   BASI   141.08M      -  ...      21.60%   12.30  10.91%    184,761
19  40   BBGI    43.09M      -  ...      34.80%    1.49  -3.87%    192,009
0   41    BBI    38.58M      -  ...     -12.30%    0.78  -3.21%  1,150,725
1   42    BBL   150.24B  16.89  ...      -0.80%   53.03  -0.77%    673,974
2   43   BBSI   531.36M  13.73  ...       8.20%   68.21   3.33%     53,629
3   44   BCOR   740.93M      -  ...      47.20%   15.91  -0.81%    501,047
4   45    BCS    34.69B  12.99  ...       1.70%    7.99  -0.50%  2,017,726
5   46   BDSX   583.83M      -  ...           -   20.16   6.84%     97,245
6   47   BEAM     4.88B      -  ...           -   81.64  -1.07%    936,147
7   48    BIO    17.42B   4.99  ...       1.20%  582.94   1.41%    139,476
8   49   BIOX   229.59M  69.66  ...           -    6.20   8.87%     95,378
9   50   BLCT   366.63M      -  ...           -   10.10  -0.79%    131,826
10  51    BLX   625.60M   8.62  ...       5.20%   15.83   1.41%     91,844
11  52    BTG     5.88B   9.15  ...           -    5.60  -2.10%  5,698,582
12  53   BWAY    83.88M      -  ...           -    7.54  10.23%     86,655
13  54   BWMX     1.18B      -  ...           -   34.15  -2.15%     21,649
14  55   BYSI   491.78M      -  ...           -   12.20  -7.99%    389,083
15  56   CALA   359.41M      -  ...           -    4.91  -3.91%  1,257,056
16  57   CALT   839.52M      -  ...           -   33.62  -1.03%        999
17  58   CASI   378.07M      -  ...     180.60%    2.95  -0.34%    347,045
18  59   CBAY   399.04M      -  ...           -    5.74  -2.38%  4,248,910
19  60    CBZ     1.44B  19.13  ...       5.70%   26.61  -0.11%    212,684

[60 rows x 18 columns]

Converters

from pyfinviz.screener import Screener
from pyfinviz.quote import Quote
from pyfinviz.converter.industry import industry_by_display_name
from pyfinviz.converter.country import country_by_display_name

quote = Quote(ticker="AMZN")
#industry and country converters from prettified display names (useful for using the industry value from Quote and using it for further screening. Also useful for displaying on UI, for example a dropdown)
country = quote.sectors[2]
industry = quote.sectors[1]
options = [industry_by_display_name[industry], country_by_display_name[country]]

screener = Screener(filter_options=options, view_option=Screener.ViewOption.OVERVIEW,
                    pages=[x for x in range(1, 4)])

Elite

Just add an extra argument 'api_key' while creating the classes. Example:

quote = Quote(ticker="AAPL", api_key="YOUR_API_KEY")
screener = Screener(api_key="YOUR_API_KEY")
screener = Screener(filter_options=options, view_option=Screener.ViewOption.OVERVIEW,
                    pages=[x for x in range(1, 4)], api_key="YOUR_API_KEY")

It works for any supported feature (Quote, Screener, News, Insider, Groups, Crypto).

About

A python package to scrape data from finviz.com

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages