Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Durham preliminary cleanup #4345

Open
wants to merge 43 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 37 commits
Commits
Show all changes
43 commits
Select commit Hold shift + click to select a range
b0af8c6
Fix up for ideal sheaves.
HechtiDerLachs Nov 14, 2024
6e4cf75
Widen some signatures.
HechtiDerLachs Nov 15, 2024
63e3834
Initialize experimental folder for contributions from Durham.
HechtiDerLachs Nov 17, 2024
0d1e98b
Add first introductory notebook.
HechtiDerLachs Nov 17, 2024
1f3e270
Add data for an automorphism.
HechtiDerLachs Nov 17, 2024
03575a3
Add second part of the presentation.
HechtiDerLachs Nov 17, 2024
17cc1fb
Allow return of components of algebraic cycles as cycles.
HechtiDerLachs Nov 20, 2024
31e3b40
Implement the Weil Divisor of a rational function.
HechtiDerLachs Nov 20, 2024
be52898
Add functionality for canonical divisor
Nov 20, 2024
23d082b
Merge pull request #22 from StardustMath/Durham_2024
HechtiDerLachs Nov 21, 2024
1c23f54
Introduce method for moving divisors (WIP).
HechtiDerLachs Nov 21, 2024
2422acb
Extend irreducible_decomposition to gather components.
HechtiDerLachs Nov 21, 2024
14e610f
Fix up pullback of Cartier divisors.
HechtiDerLachs Nov 21, 2024
31c45d4
Disable tests for the moment.
HechtiDerLachs Nov 21, 2024
0229300
Fix up moving of divisors.
HechtiDerLachs Nov 21, 2024
f44252c
Add tests.
HechtiDerLachs Nov 21, 2024
ff6c7c2
self intersection via adjunction
Nov 21, 2024
967c6db
Merge pull request #23 from StardustMath/Durham_2024
HechtiDerLachs Nov 21, 2024
ba63725
added embedding function and example
Nov 21, 2024
95513cb
Merge branch 'Durham_2024' of github.com:HechtiDerLachs/Oscar.jl into…
Nov 21, 2024
b37b2a3
Merge pull request #24 from Erroxe/Durham_2024
HechtiDerLachs Nov 21, 2024
b0a2c91
Fix up signature of self_intersection...
HechtiDerLachs Nov 21, 2024
ad8230c
Merge branch 'secrect_Durham_stuff' into Durham_2024_mod
HechtiDerLachs Nov 21, 2024
fd8d930
WIP on debugging.
HechtiDerLachs Nov 22, 2024
a9a14b0
WIP [no ci].
HechtiDerLachs Nov 22, 2024
b16cf8f
Fix up irreducible_decomposition.
HechtiDerLachs Nov 24, 2024
3db78a0
Fix up moving of divisors, etc.
HechtiDerLachs Nov 24, 2024
2812957
Extend tests.
HechtiDerLachs Nov 24, 2024
e2d8f28
Removing the course material.
HechtiDerLachs Nov 25, 2024
1df0aef
Move methods and fixes to appropriate places.
HechtiDerLachs Nov 25, 2024
bf93ffa
Add tests.
HechtiDerLachs Nov 25, 2024
318dbef
Disable some tests for the moment.
HechtiDerLachs Nov 25, 2024
b7db124
Merge branch 'master' into Durham_preliminary_cleanup
HechtiDerLachs Nov 25, 2024
4296b5b
Remove Durham file for the moment (to be added in a separate PR).
HechtiDerLachs Nov 25, 2024
84ba621
Clean up inclusion order.
HechtiDerLachs Nov 25, 2024
007694c
Some cleaning up.
HechtiDerLachs Nov 25, 2024
d12182f
Address comments from review.
HechtiDerLachs Nov 25, 2024
d55d893
Update src/AlgebraicGeometry/Schemes/Divisors/WeilDivisor.jl
HechtiDerLachs Nov 25, 2024
7c61fa5
Attempt to fix up code.
HechtiDerLachs Nov 25, 2024
17048b3
Update src/AlgebraicGeometry/Schemes/Divisors/WeilDivisor.jl
HechtiDerLachs Nov 25, 2024
4a6f57c
scheme -> ambient_scheme.
HechtiDerLachs Nov 26, 2024
2a65bac
Address concerns from review.
HechtiDerLachs Nov 26, 2024
a1abedd
Clarify the docu for `move_divisor`.
HechtiDerLachs Nov 27, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 4 additions & 5 deletions experimental/Schemes/src/Auxiliary.jl
Original file line number Diff line number Diff line change
Expand Up @@ -128,12 +128,11 @@ end

function pullback(f::AbsCoveredSchemeMorphism, C::CartierDivisor)
R = coefficient_ring(C)
C = CartierDivisor(domain(f), R)
pb = pullback(f)
for (c,D) in coefficient_dict(C)
C += c*pb(C)
result = CartierDivisor(domain(f), R)
for (D, c) in coefficient_dict(C)
result += c*pullback(f, D)
end
return C
return result
end

function pullback(f::AbsCoveredSchemeMorphism, CC::Covering)
Expand Down
56 changes: 53 additions & 3 deletions src/AlgebraicGeometry/Schemes/Divisors/AlgebraicCycles.jl
Original file line number Diff line number Diff line change
Expand Up @@ -395,7 +395,7 @@ end
# Note that we need one minimal concrete type for the return values,
# so the implementation can not be truly generic.

function +(D::T, E::T) where {T<:AbsAlgebraicCycle}
function +(D::AbsAlgebraicCycle, E::AbsAlgebraicCycle)
X = ambient_scheme(D)
X === ambient_scheme(E) || error("divisors do not live on the same scheme")
R = coefficient_ring(D)
Expand Down Expand Up @@ -454,9 +454,13 @@ Return a cycle ``E`` equal to ``D`` but as a formal sum ``E = ∑ₖ aₖ ⋅ I
where the `components` ``Iₖ`` of ``E`` are all sheaves of prime ideals.
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do we want to require that the I_k are all distinct? I would say yes.
The new code assures this, but does not because we work with IdDicts:

julia> P2 = projective_space(QQ,2);

julia> (s1,s2,s3) = homogeneous_coordinates(P2);

julia> J = ideal([s1]);

julia> J1 = ideal_sheaf(P2,J);

julia> J2 = ideal_sheaf(P2,J);

julia> D1 = algebraic_cycle(J1)
Effective algebraic cycle
  on scheme over QQ covered with 3 patches
with coefficients in integer ring
given as the formal sum of
  1 * sheaf of ideals

julia> D2 = algebraic_cycle(J2)
Effective algebraic cycle
  on scheme over QQ covered with 3 patches
with coefficients in integer ring
given as the formal sum of
  1 * sheaf of ideals

julia> D1 == D2
true

julia> irreducible_decomposition(D1+D2)
Effective algebraic cycle
  on scheme over QQ covered with 3 patches
with coefficients in integer ring
given as the formal sum of
  1 * sheaf of prime ideals
  1 * sheaf of prime ideals

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for the catch. Indeed this is not the intended behaviour.

"""
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please adapt the docstring accordingly:

where the components Iₖ of E are pairwise distinct sheaves of prime ideals.

function irreducible_decomposition(D::AbsAlgebraicCycle)
all(is_prime, keys(coefficient_dict(D))) && return D
@vprint :Divisors 4 "computing irreducible decomposition for $D"
result = zero(D)
for (I, a) in coefficient_dict(D)
if is_prime(I)
result[I] = a
continue
end
next_dict = IdDict{AbsIdealSheaf, elem_type(coefficient_ring(D))}()
decomp = maximal_associated_points(I)
for P in decomp
Expand All @@ -465,7 +469,34 @@ function irreducible_decomposition(D::AbsAlgebraicCycle)
end
result = result + a * AlgebraicCycle(ambient_scheme(D), coefficient_ring(D), next_dict, check=false)
end
return result
return _unique_prime_components(result)
end

# Given a cycle `D` with only prime components, compare the components
# and gather the coefficients of equal ones so that the result has
# pairwise distinct components.
function _unique_prime_components(D::AbsAlgebraicCycle)
@hassert :Divisors 2 all(is_prime, keys(coefficient_dict(D)))
buckets = Vector{Vector{AbsIdealSheaf}}()
for P in keys(coefficient_dict(D))
found = false
for bucket in buckets
if P == first(bucket)
push!(bucket, P)
found = true
break
end
end
!found && push!(buckets, [P])
end
R = coefficient_ring(D)
coeff_dict = IdDict{AbsIdealSheaf, elem_type(R)}()
for bucket in buckets
c = sum(D[P] for P in bucket; init=zero(R))
is_zero(c) && continue
coeff_dict[first(bucket)] = c
end
return AlgebraicCycle(ambient_scheme(D), coefficient_ring(D), coeff_dict; check=false)
end

function _colength_in_localization(Q::AbsIdealSheaf, P::AbsIdealSheaf; covering=simplified_covering(scheme(P)))
Expand Down Expand Up @@ -534,6 +565,25 @@ function integral(W::AbsAlgebraicCycle; check::Bool=true)
return result
end

# Getters for the components as honest algebraic cycles, not ideal sheaves.
function components(::Type{T}, D::AbsAlgebraicCycle) where {T <: AbsAlgebraicCycle}
simonbrandhorst marked this conversation as resolved.
Show resolved Hide resolved
X = scheme(D)
R = coefficient_ring(D)
return [AlgebraicCycle(X, R, IdDict{AbsIdealSheaf, elem_type(R)}([I=>one(R)]); check=false)::T for I in components(D)]
end

function components(::Type{T}, D::AbsWeilDivisor) where {T <: AbsWeilDivisor}
X = scheme(D)
R = coefficient_ring(D)
return [WeilDivisor(X, R, IdDict{AbsIdealSheaf, elem_type(R)}([I=>one(R)]); check=false)::T for I in components(D)]
end

function getindex(D::AbsAlgebraicCycle, C::AbsAlgebraicCycle)
comps = components(C)
@assert isone(length(comps))
return D[first(comps)]
end

function Base.hash(X::AbsAlgebraicCycle, u::UInt)
return u
end
Expand Down
11 changes: 7 additions & 4 deletions src/AlgebraicGeometry/Schemes/Divisors/CartierDivisor.jl
Original file line number Diff line number Diff line change
Expand Up @@ -88,6 +88,10 @@ function +(C::CartierDivisor, D::CartierDivisor)
return CartierDivisor(ambient_scheme(C), coefficient_ring(C), coeff_dict)
end

function -(C::CartierDivisor, E::EffectiveCartierDivisor)
return C - 1*E
end

function +(C::CartierDivisor, D::EffectiveCartierDivisor)
return C + CartierDivisor(D)
end
Expand Down Expand Up @@ -322,17 +326,16 @@ function weil_divisor(C::CartierDivisor)
end

@doc raw"""
intersect(W::WeilDivisor, C::EffectiveCartierDivisor; check::Bool=true)
intersect(W::AbsWeilDivisor, C::EffectiveCartierDivisor; check::Bool=true)

Computes the intersection of ``W`` and ``C`` as in [Ful98](@cite) and
returns an `AbsAlgebraicCycle` of codimension ``2``.
"""
function intersect(W::WeilDivisor, C::EffectiveCartierDivisor; check::Bool=true)
function intersect(W::AbsWeilDivisor, C::EffectiveCartierDivisor; check::Bool=true)
X = ambient_scheme(W)
result = zero(W)
for I in components(irreducible_decomposition(W))
inc_Y = CoveredClosedEmbedding(X, I, check=false)
#inc_Y = CoveredClosedEmbedding(X, I, covering=trivializing_covering(C), check=false)
Y = domain(inc_Y)
pbC = pullback(inc_Y)(C) # Will complain if the defining equation of C is vanishing identically on Y
W_sub = weil_divisor(pbC)
Expand All @@ -342,7 +345,7 @@ function intersect(W::WeilDivisor, C::EffectiveCartierDivisor; check::Bool=true)
end

@doc raw"""
intersect(W::WeilDivisor, C::CartierDivisor; check::Bool=true)
intersect(W::AbsWeilDivisor, C::CartierDivisor; check::Bool=true)

Computes the intersection of ``W`` and ``C`` as in [Ful98](@cite) and
returns an `AbsAlgebraicCycle` of codimension ``2``.
Expand Down
208 changes: 208 additions & 0 deletions src/AlgebraicGeometry/Schemes/Divisors/WeilDivisor.jl
Original file line number Diff line number Diff line change
Expand Up @@ -630,3 +630,211 @@ function order_of_vanishing(
I = components(D)[1]
return order_of_vanishing(f, I, check=false)
end

# Compute the colength of I_P in the localization R_P.
# This assumes that R itself is a domain and that I is of height 1.
# Then there exists a regular
# point on Spec(R) and hence R_P is also regular and a UFD.
# Being of height 1, I_P must then be principal.
function _colength_in_localization(I::Ideal, P::Ideal)
R = base_ring(I)
@assert R === base_ring(P)
U = MPolyComplementOfPrimeIdeal(saturated_ideal(P); check=false)
L, loc = localization(R, U)
I_loc = loc(I)
@assert base_ring(I_loc) === L
P_loc = loc(P)
x = _find_principal_generator(P_loc)
y = one(L)
k = 0
while true
(y in I_loc) && return k
y = y*x
k += 1
end
end

# same assumptions as above apply.
function _find_principal_generator(I::Union{<:MPolyLocalizedIdeal, <:MPolyQuoLocalizedIdeal})
L = base_ring(I)
g = gens(I)
g = sort!(g, by=x->total_degree(lifted_numerator(x)))
for x in g
is_zero(x) && continue
ideal(L, x) == I && return x
end
error("no principal generator found")
end

# produce the principal divisor associated to a rational function
function weil_divisor(
f::VarietyFunctionFieldElem;
ring::Ring=ZZ, covering::Covering=default_covering(scheme(f))
)
HechtiDerLachs marked this conversation as resolved.
Show resolved Hide resolved
@vprint :Divisors 4 "calculating principal divisor for $f\n"
X = scheme(f)
ideal_dict = IdDict{AbsIdealSheaf, elem_type(ring)}()
for U in patches(covering)
# TODO: We compute the dimensions again and again.
# Instead we should store these things in some matured version of `decomposition_info`!
has_decomposition_info(covering) && dim(ideal(OO(U), decomposition_info(covering)[U])) <= dim(X) - 2 && continue

# covering to take a shortcut in the
@vprint :Divisors 4 "doing patch $U\n"
inc_dict = IdDict{AbsIdealSheaf, elem_type(ring)}()
f_loc = f[U]
num = numerator(f_loc)
den = denominator(f_loc)
num_ideal = ideal(OO(U), num)
den_ideal = ideal(OO(U), den)
num_dec = primary_decomposition(num_ideal)
den_dec = primary_decomposition(den_ideal)
@vprint :Divisors 4 " numerator:\n"
for (_, P) in num_dec
@vprint :Divisors 4 " $P\n"
# If this component was already seen in another patch, skip it.
new_comp = PrimeIdealSheafFromChart(X, U, P)
@vprint :Divisors 4 " $(any(new_comp == PP for PP in keys(ideal_dict)) ? "already found" : "new component")\n"
any(new_comp == PP for PP in keys(ideal_dict)) && continue
c = _colength_in_localization(num_ideal, P)
@vprint :Divisors 4 " multiplicity $c\n"
Comment on lines +699 to +704
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It seems to me that we could use the decomposition info here?

Copy link
Collaborator Author

@HechtiDerLachs HechtiDerLachs Nov 25, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We can. I added a preliminary version of how to use this.

inc_dict[new_comp] = c
end
@vprint :Divisors 4 " denominator:\n"
for (_, P) in den_dec
# If this component was already seen in another patch, skip it.
new_comp = PrimeIdealSheafFromChart(X, U, P)
@vprint :Divisors 4 " $(any(new_comp == PP for PP in keys(ideal_dict)) ? "already found" : "new component")\n"
any(new_comp == PP for PP in keys(ideal_dict)) && continue
c = _colength_in_localization(den_ideal, P)
@vprint :Divisors 4 " multiplicity $c\n"
key_list = collect(keys(inc_dict))
k = findfirst(==(new_comp), key_list)
if k === nothing
is_zero(c) && continue
inc_dict[new_comp] = -c
else
d = inc_dict[key_list[k]]
if c == d
delete!(inc_dict, key_list[k])
continue
end
inc_dict[key_list[k]] = d - c
end
end
for (pp, c) in inc_dict
ideal_dict[pp] = c
end
end
return WeilDivisor(X, ring, ideal_dict; check=false)
end

@doc raw"""
move_divisor(D::AbsWeilDivisor; check::Bool=false)

Given an `AbsWeilDivisor` `D` on a scheme `X`, create a principal divisor
`div(f)` for some rational function, so that `D - div(f)` is supported
in (non-closed) scheme-theoretic points which are different from those of `D`.

Keyword arguments:
* `randomization`: By default, the choices made to create `f` keep it as simple as possible. However, one might encounter constellations where this will just swap two components of `D`. In order to avoid this, one can then switch on randomization here.
* `is_prime`: Set this to `true` if you know your divisor `D` to already be prime and avoid expensive internal checks.
"""
function move_divisor(
D::AbsWeilDivisor;
check::Bool=false,
randomization::Bool=false,
is_prime::Bool=false
)
X = scheme(D)
@check is_irreducible(X) && is_reduced(X) "scheme must be irreducible and reduced"
is_zero(D) && return D

if !is_prime && !Oscar.is_prime(D)
R = coefficient_ring(D)
return sum(a*move_divisor(WeilDivisor(D, R; check=false)) for (D, a) in coefficient_dict(irreducible_decomposition(D)); init=WeilDivisor(X, R))
end

# We may assume that `D` is prime.
P = first(components(D))
# find a chart where the support is visible
i = findfirst(U->!isone(P(U)), affine_charts(X))
i === nothing && error("divisor is trivial")
U = affine_charts(X)[i]
I = P(U)
L, loc = localization(OO(U), complement_of_prime_ideal(I))
LP = loc(I)
# Find a principal generator for the local ideal.
# This works, because we assume that `X` is irreducible and reduced.
# Then there is at least one smooth point on `U` and therefore `LP`
# is regular. Regular domains are UFD and an ideal of height 1 is
# principal there.
g = gens(saturated_ideal(I))
g = sort!(g, by=total_degree)
i = findfirst(f->(ideal(L, f) == LP), g)
x = g[i]
f = function_field(X; check)(x)
if randomization
kk = base_ring(X)
R = ambient_coordinate_ring(U)
y = rand(kk, 1:10) + sum(rand(kk, 1:10)*a for a in gens(R); init=zero(R))
f = f*inv(parent(f)(y))
end
result = irreducible_decomposition(D - weil_divisor(f))
# Check whether the supports are really different
if any(any(P == Q for Q in components(D)) for P in components(result))
return move_divisor(D; randomization=true, check, is_prime)
end
return result
end

function is_zero(D::AbsAlgebraicCycle)
all(is_zero(c) || is_one(I) for (I, c) in coefficient_dict(D)) && return true
return all(is_zero(c) || is_one(I) for (I, c) in coefficient_dict(irreducible_decomposition(D))) && return true
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Given my comment about the irreducible decomposition above this will lead to bugs.
But the fallback zero(D) == D works already. So what is the benefit here?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For some reason which I don't recall in detail, this did not work in an example we tried. Either way, this gives a shortcut which is potentially cheaper than comparing with the zero cycle.

end

# Internal method which performs an automated move of the second argument
# if things are not in sufficiently general position.
# The problem is: We have no way to check whether a variety is proper over
# its base field. But the output is only valid if that is true.
# Therefore, we have no choice, but to hide it from the user for now.
function _intersect(C::CartierDivisor, D::AbsWeilDivisor)
X = scheme(C)
@assert X === scheme(D)
R = coefficient_ring(C)
@assert R === coefficient_ring(D)
result = AlgebraicCycle(X, R)
for (E, c) in coefficient_dict(C)
result = result + c*_intersect(E, D)
end
return result
end

function _intersect(E::EffectiveCartierDivisor, D::AbsWeilDivisor; check::Bool=true)
X = scheme(E)
@assert X === scheme(D)
R = coefficient_ring(D)
result = AlgebraicCycle(X, R)
cpcd = copy(coefficient_dict(D))
DD = irreducible_decomposition(D)
cpcd = copy(coefficient_dict(DD))
for (P, a) in coefficient_dict(DD)
_, inc_P = sub(P)
# WARNING: The heuristic implemented below might still run into an infinite loop!
# We have to think about how this can effectively be avoided. See the test file
# for an example.
if is_zero(pullback(inc_P, ideal_sheaf(E)))
P_moved = move_divisor(WeilDivisor(X, R,
IdDict{AbsIdealSheaf, elem_type(R)}(
[P=>one(R)]); check=false); check=false, randomization=true, is_prime=true)
result = result + a*_intersect(E, P_moved)
else
result = result + a*AlgebraicCycle(X, R,
IdDict{AbsIdealSheaf, elem_type(R)}(
[P + ideal_sheaf(E)=>one(R)]); check=false)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

One because the computation is kind of lazy?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

No. One because it is really only the component we want to have. The coefficient a is multiplied up front.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What if the intersection is not transversal?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

That case is handled in the first if-block. Or do I not understand your question?

end
end
return result
end


3 changes: 3 additions & 0 deletions src/AlgebraicGeometry/Schemes/FunctionField/FunctionFields.jl
Original file line number Diff line number Diff line change
Expand Up @@ -517,3 +517,6 @@ function pullback(f::AbsCoveredSchemeMorphism, a::VarietyFunctionFieldElem)
end
end

scheme(f::VarietyFunctionFieldElem) = scheme(parent(f))
variety(f::VarietyFunctionFieldElem) = variety(parent(f))

11 changes: 10 additions & 1 deletion src/AlgebraicGeometry/Schemes/Sheaves/IdealSheaves.jl
Original file line number Diff line number Diff line change
Expand Up @@ -757,7 +757,7 @@ is_locally_prime(I::PrimeIdealSheafFromChart) = true

function is_equidimensional(I::AbsIdealSheaf; covering=default_covering(scheme(I)))
has_attribute(I, :is_equidimensional) && return get_attribute(I, :is_equidimensional)::Bool
has_attribute(I, :is_prime) && return get_attribute(I, :is_prime)::Bool
has_attribute(I, :is_prime) && get_attribute(I, :is_prime)::Bool && return true
local_dims = [dim(I(U)) for U in patches(covering) if !isone(I(U))]
length(local_dims) == 0 && return true # This only happens if I == OO(X)
d = first(local_dims)
Expand Down Expand Up @@ -2329,3 +2329,12 @@ function colength(I::AbsIdealSheaf; covering::Covering=default_covering(scheme(I
end
return result
end

function is_zero(II::AbsIdealSheaf)
return all(iszero(II(U)) for U in affine_charts(scheme(II)))
end

function is_zero(II::PrimeIdealSheafFromChart)
return is_zero(II(original_chart(II)))
end

Loading
Loading