Skip to content

Commit

Permalink
chore: bump dependencies (#3958)
Browse files Browse the repository at this point in the history
  • Loading branch information
thofma authored Jul 24, 2024
1 parent d94eeca commit ed7e3bb
Show file tree
Hide file tree
Showing 13 changed files with 20 additions and 20 deletions.
10 changes: 5 additions & 5 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -25,22 +25,22 @@ UUIDs = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
cohomCalg_jll = "5558cf25-a90e-53b0-b813-cadaa3ae7ade"

[compat]
AbstractAlgebra = "0.41.3"
AlgebraicSolving = "0.5.0"
AbstractAlgebra = "0.42.0"
AlgebraicSolving = "0.5.1"
Distributed = "1.6"
GAP = "0.10.2"
Hecke = "0.32.0"
Hecke = "0.33.0"
JSON = "^0.20, ^0.21"
JSON3 = "1.13.2"
LazyArtifacts = "1.6"
Markdown = "1.6"
Nemo = "0.45.5"
Nemo = "0.46.0"
Pkg = "1.6"
Polymake = "0.11.19"
Random = "1.6"
RandomExtensions = "0.4.3"
Serialization = "1.6"
Singular = "0.23.1"
Singular = "0.23.4"
TOPCOM_jll = "0.17.8"
UUIDs = "1.6"
cohomCalg_jll = "0.32.0"
Expand Down
4 changes: 2 additions & 2 deletions docs/src/Rings/rational.md
Original file line number Diff line number Diff line change
Expand Up @@ -273,7 +273,7 @@ ERROR: DivideError: integer division error
Test if ``a`` is an ``n``-th power. If so, return ```true``` and the root,
```false``` and any rational otherwise.

* `is_power(a::QQFieldElem) -> Int, QQFieldElem`
* `is_perfect_power_with_data(a::QQFieldElem) -> Int, QQFieldElem`

Find the largest ``n`` such that ``a`` is an ``n``-th power. Return ``n`` and the root.

Expand All @@ -288,7 +288,7 @@ julia> is_power(QQ(8), 3)
julia> is_power(QQ(8), 2)
(false, 8)
julia> is_power(QQ(9//16))
julia> is_perfect_power_with_data(QQ(9//16))
(2, 3//4)
julia> root(QQ(25//9), 2)
Expand Down
2 changes: 1 addition & 1 deletion experimental/IntersectionTheory/src/blowup.jl
Original file line number Diff line number Diff line change
Expand Up @@ -169,7 +169,7 @@ function present_finite_extension_ring(F::Oscar.AffAlgHom)
y -= q * gensB_lift[i]
end; ans)

FM = FreeModule(R, g)
FM = free_module(R, g)
gB = elem_type(FM)[FM(push!([j == i ? R(1) : R() for j in 1:g-1], -gensB_lift[i])) for i in 1:g-1]
gJ = elem_type(FM)[FM([j==i ? x : R() for j in 1:g]) for x in gens(J) for i in 1:g]
U = vcat(gB, gJ)
Expand Down
2 changes: 1 addition & 1 deletion experimental/SymmetricIntersections/src/representations.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1062,7 +1062,7 @@ function _has_pfr(G::Oscar.GAPGroup, dim::Int)
G_gap = G.X
f_gap = GG.EpimorphismSchurCover(G_gap)::GapObj
H_gap = GG.Source(f_gap)::GapObj
n, p = is_power(GG.Size(H_gap))::Tuple{Int, Int}
n, p = is_perfect_power_with_data(GG.Size(H_gap))::Tuple{Int, Int}
if is_prime(p)
fff_gap = GG.EpimorphismPGroup(H_gap, p)::GapObj
E_gap = fff_gap(H_gap)::GapObj
Expand Down
2 changes: 1 addition & 1 deletion src/Groups/matrices/linear_isconjugate.jl
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ is_semisimple(x::MatrixGroupElem{T}) where T <: FinFieldElem = is_coprime(order(
Return whether `x` is unipotent, i.e. its order is a power of the characteristic of its base ring.
"""
is_unipotent(x::MatrixGroupElem{T}) where T <: FinFieldElem = isone(x) || is_power(order(Int, x))[2]==Int(characteristic(x.parent.ring))
is_unipotent(x::MatrixGroupElem{T}) where T <: FinFieldElem = isone(x) || is_perfect_power_with_data(order(Int, x))[2]==Int(characteristic(x.parent.ring))



Expand Down
4 changes: 2 additions & 2 deletions src/Groups/matrices/stuff_field_gen.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,14 +8,14 @@

# changes the base ring of a polynomial ring into fqPolyRepFieldElem
function _change_type(f::PolyRingElem{T}) where T <: FinFieldElem
e,p = is_power(order(base_ring(f)))
e,p = is_perfect_power_with_data(order(base_ring(f)))
F = GF(Int(p),Int(e))
t = polynomial_ring(F,"t"; cached=false)[2]
return sum([t^i*F(lift(coeff(f,i))) for i in 0:degree(f)])
end

function _change_type(f::PolyRingElem{<: FqFieldElem})
e,p = is_power(order(base_ring(f)))
e,p = is_perfect_power_with_data(order(base_ring(f)))
F = GF(Int(p),Int(e))
t = polynomial_ring(F,"t"; cached=false)[2]
return sum([t^i*F(lift(ZZ, coeff(f,i))) for i in 0:degree(f)])
Expand Down
2 changes: 1 addition & 1 deletion src/Modules/UngradedModules/FreeMod.jl
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ free_module(R::MPolyLocRing, p::Int, name::VarName = :e; cached::Bool = false) =
free_module(R::MPolyQuoLocRing, p::Int, name::VarName = :e; cached::Bool = false) = FreeMod(R, p, name, cached = cached)

#=XXX this cannot be as it is inherently ambiguous
- FreeModule(R, n)
- free_module(R, n)
- direct sum of rings, ie. a ring
- set of n-th powers of R
thus the "category" needs to be set explicitly
Expand Down
2 changes: 1 addition & 1 deletion src/NumberTheory/GaloisGrp/GaloisGrp.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2172,7 +2172,7 @@ function isinteger(GC::GaloisCtx{Hecke.qAdicRootCtx}, B::BoundRingElem{ZZRingEle
p = GC.C.p
if e.length<2
l = coeff(e, 0)
lz = lift(l)
lz = lift(ZZ, l)
lz = Hecke.mod_sym(lz, ZZRingElem(p)^precision(l))
if abs(lz) < value(B)
return true, lz
Expand Down
2 changes: 1 addition & 1 deletion src/NumberTheory/GaloisGrp/Qt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -652,7 +652,7 @@ function isinteger(G::GaloisCtx, B::BoundRingElem{Tuple{ZZRingElem, Int, QQField

if c.length < 2 || all(x->iszero(coeff(c, x)), 1:c.length-1)
cc = coeff(c, 0)
l = Hecke.mod_sym(lift(cc), pr^precision(cc))
l = Hecke.mod_sym(lift(ZZ, cc), pr^precision(cc))
if abs(l) > pr^p[1]
return false, x
end
Expand Down
2 changes: 1 addition & 1 deletion test/Groups/matrixgroups.jl
Original file line number Diff line number Diff line change
Expand Up @@ -657,7 +657,7 @@ end
@test parent(s)==G
@test parent(u)==G
@test is_coprime(order(s),3)
@test isone(u) || is_power(order(u))[2]==3
@test isone(u) || is_perfect_power_with_data(order(u))[2]==3
@test is_semisimple(s)
@test is_unipotent(u)
@test s*u==G(x)
Expand Down
4 changes: 2 additions & 2 deletions test/Groups/subgroups_and_cosets.jl
Original file line number Diff line number Diff line change
Expand Up @@ -352,12 +352,12 @@ end
Lo = [order(l) for l in L]
@test length(Lo)==length(factor(order(G)))
@test prod(Lo) == order(G)
@test [is_prime(is_power(l)[2]) for l in Lo] == [1 for i in 1:length(L)]
@test [is_prime(is_perfect_power_with_data(l)[2]) for l in Lo] == [1 for i in 1:length(L)]
L = complement_system(G)
Lo = [index(G,l) for l in L]
@test length(Lo)==length(factor(order(G)))
@test prod(Lo) == order(G)
@test [is_prime(is_power(l)[2]) for l in Lo] == [1 for i in 1:length(L)]
@test [is_prime(is_perfect_power_with_data(l)[2]) for l in Lo] == [1 for i in 1:length(L)]

L = hall_system(symmetric_group(4))
@test is_subset(L[1], symmetric_group(4))
Expand Down
2 changes: 1 addition & 1 deletion test/book/cornerstones/groups/auxiliary_code/main.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import Pkg
Pkg.add(name="GenericCharacterTables", version=v"0.2"; io=devnull)
Pkg.add(name="GenericCharacterTables", version="0.2"; io=devnull)
using GenericCharacterTables
# for nicer printing
using GenericCharacterTables: ParameterException
2 changes: 1 addition & 1 deletion test/book/cornerstones/number-theory/galoismod.jlcon
Original file line number Diff line number Diff line change
Expand Up @@ -88,4 +88,4 @@ julia> fl = is_free(M)
false

julia> defining_polynomial(K)
x^8 + 735*x^6 + 11340*x^4 + 33075*x^2 + 11025
x^8 + 105*x^6 + 3465*x^4 + 44100*x^2 + 176400

0 comments on commit ed7e3bb

Please sign in to comment.