Skip to content

Commit

Permalink
[FTheoryTools] First implementation of G4-fluxes
Browse files Browse the repository at this point in the history
  • Loading branch information
HereAround committed Jul 24, 2024
1 parent dee1685 commit 3f0d97b
Show file tree
Hide file tree
Showing 9 changed files with 310 additions and 1 deletion.
13 changes: 13 additions & 0 deletions docs/oscar_references.bib
Original file line number Diff line number Diff line change
Expand Up @@ -2238,6 +2238,19 @@ @Article{Wit88
reportnumber = {IASSNS-HEP-88/7}
}

@Article{Wit97,
author = {Witten, Edward},
title = {{On flux quantization in M theory and the effective action}},
journal = {J. Geom. Phys.},
volume = {22},
pages = {1--13},
year = {1997},
doi = {10.1016/S0393-0440(96)00042-3},
eprint = {hep-th/9609122},
archiveprefix = {arXiv},
reportnumber = {IASSNS-HEP-96-96}
}

@Article{Yam18,
author = {Yamagishi, Ryo},
title = {On smoothness of minimal models of quotient singularities by finite subgroups of ${\rm SL}_n(\mathbb
Expand Down
3 changes: 2 additions & 1 deletion experimental/FTheoryTools/docs/doc.main
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
"weierstrass.md",
"tate.md",
"hypersurface.md",
"literature.md"
"literature.md",
"g4.md"
],
]
37 changes: 37 additions & 0 deletions experimental/FTheoryTools/docs/src/g4.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
```@meta
CurrentModule = Oscar
```

# G4-Fluxes

$G_4$-fluxes are at the heart of F-theory model building.

(Could in a next step add a "is_calabi_yau" check based on vanishing of c1)


## Constructors

We currently support the following constructor:
```@docs
g4_flux(model::AbstractFTheoryModel, class::CohomologyClass)
```


## Attributes

We currently support the following attributes:
```@docs
model(gf::G4Flux)
cohomology_class(gf::G4Flux)
```


## Properties

We currently support the following properties:
```@docs
passes_elementary_quantization_checks(gf::G4Flux)
```


## Methods
4 changes: 4 additions & 0 deletions experimental/FTheoryTools/src/FTheoryTools.jl
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,10 @@ include("standard_constructions.jl")
include("LiteratureModels/constructors.jl")
include("LiteratureModels/create_index.jl")

include("G4Fluxes/constructors.jl")
include("G4Fluxes/attributes.jl")
include("G4Fluxes/properties.jl")

include("Serialization/tate_models.jl")
include("Serialization/weierstrass_models.jl")
include("Serialization/hypersurface_models.jl")
Expand Down
54 changes: 54 additions & 0 deletions experimental/FTheoryTools/src/G4Fluxes/attributes.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
#####################################################
# 1 Basic attributes
#####################################################

@doc raw"""
model(gf::G4Flux)
Return the F-theory model for which this $G_4$-flux candidate is defined.
```jldoctest
julia> qsm_model = literature_model(arxiv_id = "1903.00009", model_parameters = Dict("k" => 4))
Hypersurface model over a concrete base
julia> abs = ambient_space(qsm_model)
Normal toric variety
julia> cohomology_ring(abs, check = false);
julia> g4_class = cohomology_class(anticanonical_divisor_class(abs))^2;
julia> g4f = g4_flux(qsm_model, g4_class, check = false)
G4-flux candidate lacking elementary quantization checks
julia> model(g4f)
Hypersurface model over a concrete base
```
"""
model(gf::G4Flux) = gf.model


@doc raw"""
cohomology_class(gf::G4Flux)
Return the cohomology class which defines the $G_4$-flux candidate.
```jldoctest
julia> qsm_model = literature_model(arxiv_id = "1903.00009", model_parameters = Dict("k" => 4))
Hypersurface model over a concrete base
julia> abs = ambient_space(qsm_model)
Normal, simplicial, 5-dimensional toric variety
julia> cohomology_ring(abs, check = false);
julia> g4_class = cohomology_class(anticanonical_divisor_class(abs))^2;
julia> g4f = g4_flux(qsm_model, g4_class, check = false)
G4-flux candidate lacking elementary quantization checks
julia> cohomology_class(g4f) == g4_class
true
```
"""
cohomology_class(gf::G4Flux) = gf.class
114 changes: 114 additions & 0 deletions experimental/FTheoryTools/src/G4Fluxes/constructors.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
################
# 1: Constructor
################

@doc raw"""
g4_flux(model::AbstractFTheoryModel, class::CohomologyClass)
Construct a G4-flux candidate on an F-theory model. This functionality is
currently limited to
- Weierstrass models,
- global Tate models,
- hypersurface models.
Furthermore, our functionality requires a concrete geometry. That is,
the base space as well as the ambient space must be toric varieties.
In the toric ambient space $X_\Sigma$, the elliptically fibered space $Y$
that defines the F-theory model, is given by a hypersurface (cut out by
the Weierstrass, Tate or hypersurface polynomial, respectively).
In this setting, we assume that a $G_4$-flux candidate is represented by a
cohomology class $h$ in $H^{(2,2)} (X_\Sigma)$. The actual $G_4$-flux candidate
is then obtained by restricting $h$ to $Y$.
It is worth recalling that the $G_4$-flux candidate is subject to the quantization
condition $G_4 + \frac{1}{2} c_2(Y) \in H^{/2,2)}( Y_, \mathbb{Z})$ (see [Wit97](@cite)).
This condition is very hard to verify. However, it is relatively easy to gather
evidence for this condition to be satisfied/show that it is violated. To this end, let
$D_1$, $D_2$ be two toric divisors in $X_\Sigma$, then the topological intersection number
$\left[ h|_Y \right] \cdot \left[ P \right] \cdot \left[ D_1 \right] \cdot \left[ D_2 \right]$
must be an integer. Even this rather elementary check can be computationally expensive.
Users can therefore decide to skip this check upon construction by setting the parameter
`check` to the value `false`.
An example is in order.
# Examples
```jldoctest
julia> qsm_model = literature_model(arxiv_id = "1903.00009", model_parameters = Dict("k" => 4))
Hypersurface model over a concrete base
julia> abs = ambient_space(qsm_model)
Normal, simplicial toric variety
julia> cohomology_ring(abs, check = false);
julia> g4_class = cohomology_class(anticanonical_divisor_class(abs))^2;
julia> g4f = g4_flux(qsm_model, g4_class)
G4-flux candidate
julia> g4f2 = g4_flux(qsm_model, g4_class, check = false)
G4-flux candidate lacking elementary quantization checks
```
"""
function g4_flux(m::AbstractFTheoryModel, g4_class::CohomologyClass; check::Bool = true)
@req (m isa WeierstrassModel || m isa GlobalTateModel || m isa HypersurfaceModel) "G4-fluxes only supported for Weierstrass, global Tate and hypersurface models"
@req base_space(m) isa NormalToricVariety "G4-flux currently supported only for toric base"
@req ambient_space(m) isa NormalToricVariety "G4-flux currently supported only for toric ambient space"
g4_candidate = G4Flux(m, g4_class)
if check && !passes_elementary_quantization_checks(g4_candidate)
error("Given G4-flux candidate found to violate quantization condition")
end
return g4_candidate
end


################################################
# 2: Equality and hash
################################################

function Base.:(==)(gf1::G4Flux, gf2::G4Flux)
# G4-fluxes can only be equal if they are defined for identically the same model
model(gf1) !== model(gf2) && return false

# Currently, can only decide equality for Weierstrass, global Tate and hypersurface models
if (m isa WeierstrassModel || m isa GlobalTateModel || m isa HypersurfaceModel) == false
error("Can currently only decide equality of G4-fluxes for Weierstrass, global Tate and hypersurface models")
end

# Compute the cohomology class corresponding to the hypersurface equation
if m isa WeierstrassModel
cl = toric_divisor_class(ambient_space(m), degree(weierstrass_polynomial(m)))
end
if m isa GlobalTateModel
cl = toric_divisor_class(ambient_space(m), degree(tate_polynomial(m)))
end
if m isa HypersurfaceModel
cl = toric_divisor_class(ambient_space(m), degree(hypersurface_equation(m)))
end
cy = cohomology_class(cl)

# Now can return the result
return cy * cohomology_class(gf1) == cy * cohomology_class(gf2)

end

function Base.hash(gf::G4Flux, h::UInt)
b = 0x92bd6ac4f87d834e % UInt
h = hash(model(gf), h)
h = hash(cohomology_class(gf), h)
return xor(h, b)
end


################################################
# 3: Display
################################################

function Base.show(io::IO, g4::G4Flux)
properties_string = String["G4-flux candidate"]
if !has_attribute(g4, :passes_elementary_quantization_checks)
push!(properties_string, "lacking elementary quantization checks")
end
join(io, properties_string, " ")
end
72 changes: 72 additions & 0 deletions experimental/FTheoryTools/src/G4Fluxes/properties.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
#####################################################
# 1 Basic properties
#####################################################

@doc raw"""
passes_elementary_quantization_checks(gf::G4Flux)
G4-fluxes are subject to the quantization condition
[Wit97](@cite) $G_4 + \frac{1}{2} c_2(Y) \in H^{(2,2)}(Y, \mathbb{Z})$.
It is hard to verify that this condition is met. However,
we can execute a number of simple consistency checks, by
verifying that $\int_{Y}{G_4 \wedge [D_1] \wedge [D_2]} \in \mathbb{Z}$
for any two toric divisors $D_1$, $D_2$. If all of these
simple consistency checks are met, this method will return
`true` and otherwise `false`.
It is worth mentioning that currently (July 2024), we only
support this check for $G_4$-fluxes defined on Weierstrass,
global Tate and hypersurface models. If this condition is not
met, this method will return an error.
```jldoctest
julia> qsm_model = literature_model(arxiv_id = "1903.00009", model_parameters = Dict("k" => 4))
Hypersurface model over a concrete base
julia> abs = ambient_space(qsm_model)
Normal, simplicial, 5-dimensional toric variety
julia> cohomology_ring(abs, check = false);
julia> g4_class = cohomology_class(anticanonical_divisor_class(abs))^2;
julia> g4 = g4_flux(qsm_model, g4_class, check = false)
G4-flux candidate lacking elementary quantization checks
julia> passes_elementary_quantization_checks(g4)
true
```
"""
@attr Bool function passes_elementary_quantization_checks(g4::G4Flux)
m = model(g4)
@req (m isa WeierstrassModel || m isa GlobalTateModel || m isa HypersurfaceModel) "Elementary quantization checks for G4-fluxes only supported for Weierstrass, global Tate and hypersurface models"
@req base_space(m) isa NormalToricVariety "Elementary quantization checks for G4-flux currently supported only for toric base"
@req ambient_space(m) isa NormalToricVariety "Elementary quantization checks for G4-flux currently supported only for toric ambient space"

# Compute the cohomology class corresponding to the hypersurface equation
if m isa WeierstrassModel
cl = toric_divisor_class(ambient_space(m), degree(weierstrass_polynomial(m)))
end
if m isa GlobalTateModel
cl = toric_divisor_class(ambient_space(m), degree(tate_polynomial(m)))
end
if m isa HypersurfaceModel
cl = toric_divisor_class(ambient_space(m), degree(hypersurface_equation(m)))
end
cy = polynomial(cohomology_class(cl))

# Now check quantization condition G4 + 1/2 c2 is integral.
c_ds = [polynomial(cohomology_class(d)) for d in torusinvariant_prime_divisors(ambient_space(m))]

# explicitly switched off an expensive test in the following line
twist_g4 = polynomial(cohomology_class(g4) + 1//2 * chern_class_c2(m; check = false))

# now execute elementary checks of the quantization condition
for i in 1:length(c_ds)
for j in i:length(c_ds)
numb = integrate(cohomology_class(ambient_space(m), twist_g4 * cy * c_ds[i] * c_ds[j]); check = false)
!is_integer(numb) && return false
end
end
return true
end
3 changes: 3 additions & 0 deletions experimental/FTheoryTools/src/exports.jl
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@ export estimated_number_of_triangulations
export explicit_model_sections
export family_of_spaces
export fiber_ambient_space
export g4_flux
export gauge_algebra
export genera_of_ci_curves
export genera_of_components_of_dual_graph
Expand Down Expand Up @@ -123,13 +124,15 @@ export kbar3
export literature_identifier
export literature_model
export max_lattice_pts_in_facet
export model
export model_description
export model_index
export model_parameters
export paper_authors
export paper_buzzwords
export paper_description
export paper_title
export passes_elementary_quantization_checks
export polytope_index
export put_over_concrete_base
export birational_literature_models
Expand Down
11 changes: 11 additions & 0 deletions experimental/FTheoryTools/src/types.jl
Original file line number Diff line number Diff line change
Expand Up @@ -226,3 +226,14 @@ struct QSMModel
genus_of_components_of_simplified_dual_graph::Dict{String, Int64}

end


################################################
# 4: The julia type for G4-fluxes
################################################

@attributes mutable struct G4Flux
model::AbstractFTheoryModel
class::CohomologyClass
G4Flux(model::AbstractFTheoryModel, class::CohomologyClass) = new(model, class)
end

0 comments on commit 3f0d97b

Please sign in to comment.