Skip to content

Commit

Permalink
Merge branch 'releases/2024/3' into nm/revert_update_defaults_release
Browse files Browse the repository at this point in the history
  • Loading branch information
peterchen-intel authored Aug 12, 2024
2 parents 9651e87 + 33667bf commit 9639188
Show file tree
Hide file tree
Showing 34 changed files with 1,721 additions and 203 deletions.
6 changes: 3 additions & 3 deletions .github/workflows/causal_lm_cpp.yml
Original file line number Diff line number Diff line change
Expand Up @@ -13,9 +13,9 @@ concurrency:
cancel-in-progress: true

env:
l_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/pre-release/2024.3.0rc1/linux/l_openvino_toolkit_ubuntu20_2024.3.0.dev20240711_x86_64.tgz
m_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/pre-release/2024.3.0rc1/macos/m_openvino_toolkit_macos_12_6_2024.3.0.dev20240711_x86_64.tgz
w_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/pre-release/2024.3.0rc1/windows/w_openvino_toolkit_windows_2024.3.0.dev20240711_x86_64.zip
l_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/pre-release/2024.3.0rc2/linux/l_openvino_toolkit_ubuntu20_2024.3.0.dev20240719_x86_64.tgz
m_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/pre-release/2024.3.0rc2/macos/m_openvino_toolkit_macos_12_6_2024.3.0.dev20240719_x86_64.tgz
w_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/pre-release/2024.3.0rc2/windows/w_openvino_toolkit_windows_2024.3.0.dev20240719_x86_64.zip
jobs:
cpp-multinomial-greedy_causal_lm-ubuntu:
runs-on: ubuntu-20.04-8-cores
Expand Down
7 changes: 4 additions & 3 deletions .github/workflows/genai_package.yml
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,9 @@ concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.ref_name }}
cancel-in-progress: true
env:
l_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/pre-release/2024.3.0rc1/linux/l_openvino_toolkit_ubuntu20_2024.3.0.dev20240711_x86_64.tgz
m_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/pre-release/2024.3.0rc1/macos/m_openvino_toolkit_macos_12_6_2024.3.0.dev20240711_x86_64.tgz
w_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/pre-release/2024.3.0rc1/windows/w_openvino_toolkit_windows_2024.3.0.dev20240711_x86_64.zip
l_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/pre-release/2024.3.0rc2/linux/l_openvino_toolkit_ubuntu20_2024.3.0.dev20240719_x86_64.tgz
m_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/pre-release/2024.3.0rc2/macos/m_openvino_toolkit_macos_12_6_2024.3.0.dev20240719_x86_64.tgz
w_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/pre-release/2024.3.0rc2/windows/w_openvino_toolkit_windows_2024.3.0.dev20240719_x86_64.zip
jobs:
ubuntu_genai_package:
strategy:
Expand Down Expand Up @@ -113,5 +113,6 @@ jobs:
&& cmake --install "samples build" --config ${{ matrix.build-type }} --component samples_bin --prefix samples_install
if: ${{ 'Release' != matrix.build-type }}
- run: call ov\setupvars.bat && "${{ github.workspace }}/samples_install/samples_bin/greedy_causal_lm" .\TinyLlama-1.1B-Chat-v1.0\ ""
if: ${{ 'Release' == matrix.build-type }} # Tokenizers don't work in debug
- run: call ov\setupvars.bat && python .\ov\samples\python\multinomial_causal_lm\multinomial_causal_lm.py .\TinyLlama-1.1B-Chat-v1.0\ 0
if: ${{ 'Release' == matrix.build-type }} # Python bindings can be built in Release only
6 changes: 3 additions & 3 deletions .github/workflows/genai_python_lib.yml
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,9 @@ concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.ref_name }}
cancel-in-progress: true
env:
l_ov_centos_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/pre-release/2024.3.0rc1/linux/l_openvino_toolkit_centos7_2024.3.0.dev20240711_x86_64.tgz
m_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/pre-release/2024.3.0rc1/macos/m_openvino_toolkit_macos_12_6_2024.3.0.dev20240711_x86_64.tgz
w_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/pre-release/2024.3.0rc1/windows/w_openvino_toolkit_windows_2024.3.0.dev20240711_x86_64.zip
l_ov_centos_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/pre-release/2024.3.0rc2/linux/l_openvino_toolkit_centos7_2024.3.0.dev20240719_x86_64.tgz
m_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/pre-release/2024.3.0rc2/macos/m_openvino_toolkit_macos_12_6_2024.3.0.dev20240719_x86_64.tgz
w_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/pre-release/2024.3.0rc2/windows/w_openvino_toolkit_windows_2024.3.0.dev20240719_x86_64.zip
jobs:
ubuntu_genai_python_lib:
# A tokenizers' dependency fails to compile on ubuntu-20 n CenOS7 env.
Expand Down
38 changes: 0 additions & 38 deletions Dockerfile

This file was deleted.

17 changes: 9 additions & 8 deletions llm_bench/python/requirements.txt
Original file line number Diff line number Diff line change
@@ -1,17 +1,18 @@
--extra-index-url https://download.pytorch.org/whl/cpu
numpy
--extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly
openvino
openvino-tokenizers
openvino_genai
openvino~=2024.3.0
openvino-tokenizers~=2024.3.0
openvino_genai~=2024.3.0
auto-gptq>=0.5.1 # for gptq
pillow
torch
transformers>=4.40.0
torch<2.5.0
torchvision<0.20.0
transformers>=4.40.0,<4.43.0
diffusers>=0.22.0
#optimum is in dependency list of optimum-intel
git+https://github.com/huggingface/optimum-intel.git@439d61f79cf55d5d0b28334f577b6ac3c5ced28f#egg=optimum-intel
git+https://github.com/openvinotoolkit/nncf.git@develop#egg=nncf
#optimum is in dependency list of optimum-intel
git+https://github.com/huggingface/optimum-intel.git@6388aeb8738b63e28fc594af84df94590e77cb9a#egg=optimum-intel
nncf~=2.12.0
packaging
psutil
timm
Expand Down
1 change: 1 addition & 0 deletions samples/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ add_subdirectory(cpp/greedy_causal_lm)
add_subdirectory(cpp/multinomial_causal_lm)
add_subdirectory(cpp/prompt_lookup_decoding_lm)
add_subdirectory(cpp/speculative_decoding_lm)
add_subdirectory(cpp/benchmark_genai)

install(FILES requirements.txt DESTINATION samples
COMPONENT cpp_samples_genai)
Expand Down
24 changes: 24 additions & 0 deletions samples/cpp/benchmark_genai/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
# Copyright (C) 2023-2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0


find_package(OpenVINOGenAI REQUIRED PATHS
"${CMAKE_BINARY_DIR}" # Reuse the package from the build.
${OpenVINO_DIR} # GenAI may be installed alogside OpenVINO.
)

FetchContent_Declare(cxxopts
URL https://github.com/jarro2783/cxxopts/archive/refs/tags/v3.1.1.tar.gz
URL_HASH SHA256=523175f792eb0ff04f9e653c90746c12655f10cb70f1d5e6d6d9491420298a08)
FetchContent_MakeAvailable(cxxopts)

add_executable(benchmark_genai benchmark_genai.cpp)
target_link_libraries(benchmark_genai PRIVATE openvino::genai cxxopts::cxxopts)
set_target_properties(benchmark_genai PROPERTIES
COMPILE_PDB_NAME benchmark_genai
# Ensure out of box LC_RPATH on macOS with SIP
INSTALL_RPATH_USE_LINK_PATH ON)
install(TARGETS benchmark_genai
RUNTIME DESTINATION samples_bin/
COMPONENT samples_bin
EXCLUDE_FROM_ALL)
47 changes: 47 additions & 0 deletions samples/cpp/benchmark_genai/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# LLMs benchmarking sample

This sample script demonstrates how to benchmark an LLMs in OpenVINO GenAI. The script includes functionality for warm-up iterations, generating text, and calculating various performance metrics.

## Download and convert the model and tokenizers

The `--upgrade-strategy eager` option is needed to ensure `optimum-intel` is upgraded to the latest version.

It's not required to install [../../requirements.txt](../../requirements.txt) for deployment if the model has already been exported.

```sh
pip install --upgrade-strategy eager -r ../../requirements.txt
optimum-cli export openvino --trust-remote-code --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0
```

## Usage

```sh
benchmark_vanilla_genai [OPTIONS]
```

### Options

- `-m, --model`: Path to the model and tokenizers base directory.
- `-p, --prompt` (default: `"The Sky is blue because"`): The prompt to generate text.
- `-nw, --num_warmup` (default: `1`): Number of warmup iterations.
- `-mt, --max_new_tokens` (default: `20`): Number of warmup iterations.
- `-n, --num_iter` (default: `3`): Number of iterations.
- `-d, --device` (default: `"CPU"`): Device to run the model on.

### Output:

```
benchmark_vanilla_genai -m TinyLlama-1.1B-Chat-v1.0 -n 10
```

```
Load time: 3405.69 ms
Generate time: 1430.77 ± 3.04 ms
Tokenization time: 0.51 ± 0.02 ms
Detokenization time: 0.37 ± 0.01 ms
TTFT: 81.60 ± 0.54 ms
TPOT: 71.52 ± 2.72 ms
Throughput tokens/s: 13.98 ± 0.53
```

For more information how performance metrics are calculated please follow [performance-metrics tutorial](../../../src/README.md#performance-metrics).
70 changes: 70 additions & 0 deletions samples/cpp/benchmark_genai/benchmark_genai.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
// Copyright (C) 2023-2024 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "openvino/genai/llm_pipeline.hpp"
#include <cxxopts.hpp>

int main(int argc, char* argv[]) try {
cxxopts::Options options("benchmark_vanilla_genai", "Help command");

options.add_options()
("m,model", "Path to model and tokenizers base directory", cxxopts::value<std::string>()->default_value("."))
("p,prompt", "Prompt", cxxopts::value<std::string>()->default_value("The Sky is blue because"))
("nw,num_warmup", "Number of warmup iterations", cxxopts::value<size_t>()->default_value(std::to_string(1)))
("n,num_iter", "Number of iterations", cxxopts::value<size_t>()->default_value(std::to_string(3)))
("mt,max_new_tokens", "Maximal number of new tokens", cxxopts::value<size_t>()->default_value(std::to_string(20)))
("d,device", "device", cxxopts::value<std::string>()->default_value("CPU"))
("h,help", "Print usage");

cxxopts::ParseResult result;
try {
result = options.parse(argc, argv);
} catch (const cxxopts::exceptions::exception& e) {
std::cout << e.what() << "\n\n";
std::cout << options.help() << std::endl;
return EXIT_FAILURE;
}

if (result.count("help")) {
std::cout << options.help() << std::endl;
return EXIT_SUCCESS;
}

std::string prompt = result["prompt"].as<std::string>();
const std::string model_path = result["model"].as<std::string>();
std::string device = result["device"].as<std::string>();
size_t num_warmup = result["num_warmup"].as<size_t>();
size_t num_iter = result["num_iter"].as<size_t>();

ov::genai::GenerationConfig config;
config.max_new_tokens = result["max_new_tokens"].as<size_t>();

ov::genai::LLMPipeline pipe(model_path, device);

for (size_t i = 0; i < num_warmup; i++)
pipe.generate(prompt, config);

ov::genai::DecodedResults res = pipe.generate(prompt, config);
ov::genai::PerfMetrics metrics = res.perf_metrics;
for (size_t i = 0; i < num_iter - 1; i++) {
res = pipe.generate(prompt, config);
metrics = metrics + res.perf_metrics;
}

std::cout << std::fixed << std::setprecision(2);
std::cout << "Load time: " << metrics.get_load_time() << " ms" << std::endl;
std::cout << "Generate time: " << metrics.get_generate_duration().mean << " ± " << metrics.get_generate_duration().std << " ms" << std::endl;
std::cout << "Tokenization time: " << metrics.get_tokenization_duration().mean << " ± " << metrics.get_tokenization_duration().std << " ms" << std::endl;
std::cout << "Detokenization time: " << metrics.get_detokenization_duration().mean << " ± " << metrics.get_detokenization_duration().std << " ms" << std::endl;
std::cout << "TTFT: " << metrics.get_ttft().mean << " ± " << metrics.get_ttft().std << " ms" << std::endl;
std::cout << "TPOT: " << metrics.get_tpot().mean << " ± " << metrics.get_tpot().std << " ms/token " << std::endl;
std::cout << "Throughput: " << metrics.get_throughput().mean << " ± " << metrics.get_throughput().std << " tokens/s" << std::endl;

return 0;
} catch (const std::exception& error) {
std::cerr << error.what() << '\n';
return EXIT_FAILURE;
} catch (...) {
std::cerr << "Non-exception object thrown\n";
return EXIT_FAILURE;
}
47 changes: 47 additions & 0 deletions samples/python/benchmark_genai/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# LLMs benchmarking sample

This sample script demonstrates how to benchmark an LLMs in OpenVINO GenAI. The script includes functionality for warm-up iterations, generating text, and calculating various performance metrics.

## Download and convert the model and tokenizers

The `--upgrade-strategy eager` option is needed to ensure `optimum-intel` is upgraded to the latest version.

It's not required to install [../../requirements.txt](../../requirements.txt) for deployment if the model has already been exported.

```sh
pip install --upgrade-strategy eager -r ../../requirements.txt
optimum-cli export openvino --trust-remote-code --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0
```

## Usage

```sh
python benchmark_vanilla_genai.py [OPTIONS]
```

### Options

- `-m, --model`: Path to the model and tokenizers base directory.
- `-p, --prompt` (default: `"The Sky is blue because"`): The prompt to generate text.
- `-nw, --num_warmup` (default: `1`): Number of warmup iterations.
- `-n, --num_iter` (default: `3`): Number of iterations.
- `-mt, --max_new_tokens` (default: `20`): Number of warmup iterations.
- `-d, --device` (default: `"CPU"`): Device to run the model on.

### Output:

```
python benchmark_vanilla_genai.py -m TinyLlama-1.1B-Chat-v1.0 -n 10
```

```
Load time: 3405.69 ms
Generate time: 1430.77 ± 3.04 ms
Tokenization time: 0.51 ± 0.02 ms
Detokenization time: 0.37 ± 0.01 ms
TTFT: 81.60 ± 0.54 ms
TPOT: 71.52 ± 2.72 ms
Throughput tokens/s: 13.98 ± 0.53
```

For more information on how performance metrics are calculated, see [performance metrics readme](../../../src/README.md#performance-metrics).
49 changes: 49 additions & 0 deletions samples/python/benchmark_genai/benchmark_genai.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
# Copyright (C) 2023-2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import argparse
import openvino_genai as ov_genai

def main():
parser = argparse.ArgumentParser(description="Help command")
parser.add_argument("-m", "--model", type=str, help="Path to model and tokenizers base directory")
parser.add_argument("-p", "--prompt", type=str, default="The Sky is blue because", help="Prompt")
parser.add_argument("-nw", "--num_warmup", type=int, default=1, help="Number of warmup iterations")
parser.add_argument("-n", "--num_iter", type=int, default=2, help="Number of iterations")
parser.add_argument("-mt", "--max_new_tokens", type=int, default=20, help="Maximal number of new tokens")
parser.add_argument("-d", "--device", type=str, default="CPU", help="Device")

args = parser.parse_args()

# Perf metrics is stored in DecodedResults.
# In order to get DecodedResults instead of a string input should be a list.
prompt = [args.prompt]
model_path = args.model
device = args.device
num_warmup = args.num_warmup
num_iter = args.num_iter

config = ov_genai.GenerationConfig()
config.max_new_tokens = args.max_new_tokens

pipe = ov_genai.LLMPipeline(model_path, device)

for _ in range(num_warmup):
pipe.generate(prompt, config)

res = pipe.generate(prompt, config)
perf_metrics = res.perf_metrics
for _ in range(num_iter - 1):
res = pipe.generate(prompt, config)
perf_metrics += res.perf_metrics

print(f"Load time: {perf_metrics.get_load_time():.2f} ms")
print(f"Generate time: {perf_metrics.get_generate_duration().mean:.2f} ± {perf_metrics.get_generate_duration().std:.2f} ms")
print(f"Tokenization time: {perf_metrics.get_tokenization_duration().mean:.2f} ± {perf_metrics.get_tokenization_duration().std:.2f} ms")
print(f"Detokenization time: {perf_metrics.get_detokenization_duration().mean:.2f} ± {perf_metrics.get_detokenization_duration().std:.2f} ms")
print(f"TTFT: {perf_metrics.get_ttft().mean:.2f} ± {perf_metrics.get_ttft().std:.2f} ms")
print(f"TPOT: {perf_metrics.get_tpot().mean:.2f} ± {perf_metrics.get_tpot().std:.2f} ms")
print(f"Throughput : {perf_metrics.get_throughput().mean:.2f} ± {perf_metrics.get_throughput().std:.2f} tokens/s")

if __name__ == "__main__":
main()
8 changes: 8 additions & 0 deletions samples/python/multinomial_causal_lm/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@

This example showcases inference of text-generation Large Language Models (LLMs): `chatglm`, `LLaMA`, `Qwen` and other models with the same signature. The application doesn't have many configuration options to encourage the reader to explore and modify the source code. For example, change the device for inference to GPU. The sample fearures `ov::genai::LLMPipeline` and configures it to run random sampling algorithm. There is also a Jupyter [notebook](https://github.com/openvinotoolkit/openvino_notebooks/tree/latest/notebooks/llm-chatbot) which provides an example of LLM-powered Chatbot in Python.

This sample also contains example implementation of an iterable streamer with bufferisation.

## Download and convert the model and tokenizers

The `--upgrade-strategy eager` option is needed to ensure `optimum-intel` is upgraded to the latest version.
Expand All @@ -22,6 +24,12 @@ Discrete GPUs (dGPUs) usually provide better performance compared to CPUs. It is

See https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md#supported-models for the list of supported models.

## Streaming

This Python example demonstrates custom detokenization with bufferization. The streamer receives integer tokens corresponding to each word or subword, one by one. If tokens are decoded individually, the resulting text misses necessary spaces because of detokenize(tokenize(" a")) == "a".

To address this, the detokenizer needs a larger context. We accumulate tokens in a tokens_cache buffer and decode multiple tokens together, adding the text to the streaming queue only when a complete decoded chunk is ready. We run a separate thread to print all new elements arriving in this queue from the generation pipeline. Each generated chunk of text is put into a synchronized queue, ensuring that all put and get operations are thread-safe and blocked until they can proceed.

### Troubleshooting

#### Unicode characters encoding error on Windows
Expand Down
Loading

0 comments on commit 9639188

Please sign in to comment.