Skip to content

Commit

Permalink
[ImageGeneration] EulerAncestralDiscreteScheduler (#1407)
Browse files Browse the repository at this point in the history
![image](https://github.com/user-attachments/assets/6b688510-50d9-4f32-b80d-cb8cfa0b4b79)

CVS-156803
CVS-158965

---------

Co-authored-by: Ilya Lavrenov <[email protected]>
  • Loading branch information
likholat and ilya-lavrenov authored Dec 19, 2024
1 parent 1542c60 commit 7a02d2b
Show file tree
Hide file tree
Showing 9 changed files with 337 additions and 4 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,8 @@ class OPENVINO_GENAI_EXPORTS Scheduler {
DDIM,
EULER_DISCRETE,
FLOW_MATCH_EULER_DISCRETE,
PNDM
PNDM,
EULER_ANCESTRAL_DISCRETE
};

static std::shared_ptr<Scheduler> from_config(const std::filesystem::path& scheduler_config_path,
Expand Down
261 changes: 261 additions & 0 deletions src/cpp/src/image_generation/schedulers/euler_ancestral_discrete.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,261 @@
// Copyright (C) 2023-2024 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include <cassert>
#include <random>
#include <fstream>
#include <iterator>

#include "image_generation/schedulers/euler_ancestral_discrete.hpp"
#include "image_generation/numpy_utils.hpp"

namespace ov {
namespace genai {

EulerAncestralDiscreteScheduler::Config::Config(const std::filesystem::path& scheduler_config_path) {
std::ifstream file(scheduler_config_path);
OPENVINO_ASSERT(file.is_open(), "Failed to open ", scheduler_config_path);

nlohmann::json data = nlohmann::json::parse(file);
using utils::read_json_param;

read_json_param(data, "num_train_timesteps", num_train_timesteps);
read_json_param(data, "beta_start", beta_start);
read_json_param(data, "beta_end", beta_end);
read_json_param(data, "beta_schedule", beta_schedule);
read_json_param(data, "trained_betas", trained_betas);
read_json_param(data, "steps_offset", steps_offset);
read_json_param(data, "prediction_type", prediction_type);
read_json_param(data, "timestep_spacing", timestep_spacing);
read_json_param(data, "rescale_betas_zero_snr", rescale_betas_zero_snr);
}

EulerAncestralDiscreteScheduler::EulerAncestralDiscreteScheduler(const std::filesystem::path& scheduler_config_path)
: EulerAncestralDiscreteScheduler(Config(scheduler_config_path)) {
}

EulerAncestralDiscreteScheduler::EulerAncestralDiscreteScheduler(const Config& scheduler_config): m_config(scheduler_config) {
std::vector<float> alphas, betas;

using numpy_utils::linspace;

if (!m_config.trained_betas.empty()) {
betas = m_config.trained_betas;
} else if (m_config.beta_schedule == BetaSchedule::LINEAR) {
betas = linspace<float>(m_config.beta_start, m_config.beta_end, m_config.num_train_timesteps);
} else if (m_config.beta_schedule == BetaSchedule::SCALED_LINEAR) {
float start = std::sqrt(m_config.beta_start);
float end = std::sqrt(m_config.beta_end);
betas = linspace<float>(start, end, m_config.num_train_timesteps);
std::for_each(betas.begin(), betas.end(), [](float& x) {
x *= x;
});
// TODO: else if beta_schedule == "squaredcos_cap_v2"
} else {
OPENVINO_THROW(
"'beta_schedule' must be one of 'LINEAR' or 'SCALED_LINEAR'. Please, add support of other types");
}

if (m_config.rescale_betas_zero_snr) {
using numpy_utils::rescale_zero_terminal_snr;
rescale_zero_terminal_snr(betas);
}

std::transform(betas.begin(), betas.end(), std::back_inserter(alphas), [](float b) {
return 1.0f - b;
});

for (size_t i = 1; i <= alphas.size(); ++i) {
float alpha_cumprod =
std::accumulate(std::begin(alphas), std::begin(alphas) + i, 1.0, std::multiplies<float>{});
m_alphas_cumprod.push_back(alpha_cumprod);
}

if (m_config.rescale_betas_zero_snr) {
m_alphas_cumprod.back() = std::pow(2, -24);
}

for (auto it = m_alphas_cumprod.rbegin(); it != m_alphas_cumprod.rend(); ++it) {
float sigma = std::pow(((1 - (*it)) / (*it)), 0.5);
m_sigmas.push_back(sigma);
}
m_sigmas.push_back(0);

// setable values
auto linspaced =
linspace<float>(0.0f, static_cast<float>(m_config.num_train_timesteps - 1), m_config.num_train_timesteps, true);
for (auto it = linspaced.rbegin(); it != linspaced.rend(); ++it) {
m_timesteps.push_back(static_cast<int64_t>(std::round(*it)));
}
m_num_inference_steps = -1;
m_step_index = -1;
m_begin_index = -1;
m_is_scale_input_called = false;
}

void EulerAncestralDiscreteScheduler::set_timesteps(size_t num_inference_steps, float strength) {
m_timesteps.clear();
m_sigmas.clear();
m_step_index = m_begin_index = -1;
m_num_inference_steps = num_inference_steps;
std::vector<float> sigmas;

switch (m_config.timestep_spacing) {
case TimestepSpacing::LINSPACE: {
using numpy_utils::linspace;
float end = static_cast<float>(m_config.num_train_timesteps - 1);
auto linspaced = linspace<float>(0.0f, end, num_inference_steps, true);
for (auto it = linspaced.rbegin(); it != linspaced.rend(); ++it) {
m_timesteps.push_back(static_cast<int64_t>(std::round(*it)));
}
break;
}
case TimestepSpacing::LEADING: {
size_t step_ratio = m_config.num_train_timesteps / m_num_inference_steps;
for (size_t i = num_inference_steps - 1; i != -1; --i) {
m_timesteps.push_back(i * step_ratio + m_config.steps_offset);
}
break;
}
case TimestepSpacing::TRAILING: {
float step_ratio = static_cast<float>(m_config.num_train_timesteps) / static_cast<float>(m_num_inference_steps);
for (float i = m_config.num_train_timesteps; i > 0; i -= step_ratio) {
m_timesteps.push_back(static_cast<int64_t>(std::round(i)) - 1);
}
break;
}
default:
OPENVINO_THROW("Unsupported value for 'timestep_spacing'");
}

for (const float& i : m_alphas_cumprod) {
float sigma = std::pow(((1 - i) / i), 0.5);
sigmas.push_back(sigma);
}

using numpy_utils::interp;
std::vector<size_t> x_data_points(sigmas.size());
std::iota(x_data_points.begin(), x_data_points.end(), 0);
m_sigmas = interp(m_timesteps, x_data_points, sigmas);
m_sigmas.push_back(0.0f);

// apply 'strength' used in image generation
// in diffusers, it's https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py#L650
{
size_t init_timestep = std::min<size_t>(num_inference_steps * strength, num_inference_steps);
size_t t_start = std::max<size_t>(num_inference_steps - init_timestep, 0);
// keep original timesteps
m_schedule_timesteps = m_timesteps;
// while return patched ones by 'strength' parameter
m_timesteps = std::vector<int64_t>(m_timesteps.begin() + t_start, m_timesteps.end());
m_begin_index = t_start;
}
}

std::map<std::string, ov::Tensor> EulerAncestralDiscreteScheduler::step(ov::Tensor noise_pred, ov::Tensor latents, size_t inference_step, std::shared_ptr<Generator> generator) {
// noise_pred - model_output
// latents - sample
// inference_step

size_t timestep = m_timesteps[inference_step];

if (m_step_index == -1)
m_step_index = m_begin_index;

float sigma = m_sigmas[m_step_index];

float* model_output_data = noise_pred.data<float>();
float* sample_data = latents.data<float>();

ov::Tensor pred_original_sample(noise_pred.get_element_type(), noise_pred.get_shape());
float* pred_original_sample_data = pred_original_sample.data<float>();

switch (m_config.prediction_type) {
case PredictionType::EPSILON:
for (size_t i = 0; i < noise_pred.get_size(); ++i) {
pred_original_sample_data[i] = sample_data[i] - sigma * model_output_data[i];
}
break;
case PredictionType::V_PREDICTION:
for (size_t i = 0; i < noise_pred.get_size(); ++i) {
pred_original_sample_data[i] = model_output_data[i] * (-sigma / std::pow((std::pow(sigma, 2) + 1), 0.5)) +
(sample_data[i] / (std::pow(sigma, 2) + 1));
}
break;
default:
OPENVINO_THROW("Unsupported value for 'PredictionType': must be one of `epsilon`, or `v_prediction`");
}

float sigma_from = m_sigmas[m_step_index];
float sigma_to = m_sigmas[m_step_index + 1];
float sigma_up = std::sqrt(std::pow(sigma_to, 2) * (std::pow(sigma_from, 2) - std::pow(sigma_to, 2)) / std::pow(sigma_from, 2));
float sigma_down = std::sqrt(std::pow(sigma_to, 2) - std::pow(sigma_up, 2));
float dt = sigma_down - sigma;

ov::Tensor prev_sample = ov::Tensor(latents.get_element_type(), latents.get_shape());
float* prev_sample_data = prev_sample.data<float>();

ov::Tensor noise = generator->randn_tensor(noise_pred.get_shape());
const float* noise_data = noise.data<float>();

for (size_t i = 0; i < prev_sample.get_size(); ++i) {
float derivative = (sample_data[i] - pred_original_sample_data[i]) / sigma;
prev_sample_data[i] = (sample_data[i] + derivative * dt) + noise_data[i] * sigma_up;
}

m_step_index++;

return {{"latent", prev_sample}, {"denoised", pred_original_sample}};
}

size_t EulerAncestralDiscreteScheduler::_index_for_timestep(int64_t timestep) const{
for (size_t i = 0; i < m_schedule_timesteps.size(); ++i) {
if (timestep == m_schedule_timesteps[i]) {
return i;
}
}

OPENVINO_THROW("Failed to find index for timestep ", timestep);
}

void EulerAncestralDiscreteScheduler::add_noise(ov::Tensor init_latent, ov::Tensor noise, int64_t latent_timestep) const {
size_t index_for_timestep = _index_for_timestep(latent_timestep);
const float sigma = m_sigmas[index_for_timestep];

float * init_latent_data = init_latent.data<float>();
const float * noise_data = noise.data<float>();

for (size_t i = 0; i < init_latent.get_size(); ++i) {
init_latent_data[i] = init_latent_data[i] + sigma * noise_data[i];
}
}

std::vector<int64_t> EulerAncestralDiscreteScheduler::get_timesteps() const {
return m_timesteps;
}

void EulerAncestralDiscreteScheduler::scale_model_input(ov::Tensor sample, size_t inference_step) {
if (m_step_index == -1)
m_step_index = m_begin_index;

float sigma = m_sigmas[m_step_index];
float* sample_data = sample.data<float>();
for (size_t i = 0; i < sample.get_size(); i++) {
sample_data[i] /= std::pow((std::pow(sigma, 2) + 1), 0.5);
}
m_is_scale_input_called = true;
}

float EulerAncestralDiscreteScheduler::get_init_noise_sigma() const {
float max_sigma = *std::max_element(m_sigmas.begin(), m_sigmas.end());

if (m_config.timestep_spacing == TimestepSpacing::LINSPACE ||
m_config.timestep_spacing == TimestepSpacing::TRAILING) {
return max_sigma;
}

return std::sqrt(std::pow(max_sigma, 2) + 1);
}

} // namespace genai
} // namespace ov
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
// Copyright (C) 2023-2024 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#pragma once

#include <filesystem>
#include <list>
#include <string>

#include "image_generation/schedulers/types.hpp"
#include "image_generation/schedulers/ischeduler.hpp"

namespace ov {
namespace genai {

class EulerAncestralDiscreteScheduler : public IScheduler {
public:
struct Config {
int32_t num_train_timesteps = 1000;
float beta_start = 0.0001f, beta_end = 0.02f;
BetaSchedule beta_schedule = BetaSchedule::LINEAR;
std::vector<float> trained_betas = {};
size_t steps_offset = 0;
PredictionType prediction_type = PredictionType::EPSILON;
TimestepSpacing timestep_spacing = TimestepSpacing::LEADING;
bool rescale_betas_zero_snr = false;

Config() = default;
explicit Config(const std::filesystem::path& scheduler_config_path);
};

explicit EulerAncestralDiscreteScheduler(const std::filesystem::path& scheduler_config_path);
explicit EulerAncestralDiscreteScheduler(const Config& scheduler_config);

void set_timesteps(size_t num_inference_steps, float strength) override;

std::vector<std::int64_t> get_timesteps() const override;

float get_init_noise_sigma() const override;

void scale_model_input(ov::Tensor sample, size_t inference_step) override;

std::map<std::string, ov::Tensor> step(ov::Tensor noise_pred, ov::Tensor latents, size_t inference_step, std::shared_ptr<Generator> generator) override;

void add_noise(ov::Tensor init_latent, ov::Tensor noise, int64_t latent_timestep) const override;

private:
Config m_config;

std::vector<float> m_alphas_cumprod, m_sigmas;
std::vector<int64_t> m_timesteps, m_schedule_timesteps;
size_t m_num_inference_steps;

int m_step_index, m_begin_index;
bool m_is_scale_input_called;

size_t _index_for_timestep(int64_t timestep) const;
};

} // namespace genai
} // namespace ov
3 changes: 3 additions & 0 deletions src/cpp/src/image_generation/schedulers/scheduler.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
#include "image_generation/schedulers/euler_discrete.hpp"
#include "image_generation/schedulers/flow_match_euler_discrete.hpp"
#include "image_generation/schedulers/pndm.hpp"
#include "image_generation/schedulers/euler_ancestral_discrete.hpp"

namespace ov {
namespace genai {
Expand Down Expand Up @@ -41,6 +42,8 @@ std::shared_ptr<Scheduler> Scheduler::from_config(const std::filesystem::path& s
scheduler = std::make_shared<FlowMatchEulerDiscreteScheduler>(scheduler_config_path);
} else if (scheduler_type == Scheduler::Type::PNDM) {
scheduler = std::make_shared<PNDMScheduler>(scheduler_config_path);
} else if (scheduler_type == Scheduler::Type::EULER_ANCESTRAL_DISCRETE) {
scheduler = std::make_shared<EulerAncestralDiscreteScheduler>(scheduler_config_path);
} else {
OPENVINO_THROW("Unsupported scheduler type '", scheduler_type, ". Please, manually create scheduler via supported one");
}
Expand Down
2 changes: 2 additions & 0 deletions src/cpp/src/image_generation/schedulers/types.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,8 @@ void read_json_param(const nlohmann::json& data, const std::string& name, Schedu
param = Scheduler::FLOW_MATCH_EULER_DISCRETE;
else if (scheduler_type_str == "PNDMScheduler")
param = Scheduler::PNDM;
else if (scheduler_type_str == "EulerAncestralDiscreteScheduler")
param = Scheduler::EULER_ANCESTRAL_DISCRETE;
else if (!scheduler_type_str.empty()) {
OPENVINO_THROW("Unsupported value for 'scheduler' ", scheduler_type_str);
}
Expand Down
1 change: 1 addition & 0 deletions src/docs/SUPPORTED_MODELS.md
Original file line number Diff line number Diff line change
Expand Up @@ -217,6 +217,7 @@ The pipeline can work with other similar topologies produced by `optimum-intel`
<ul>
<li><a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9"><code>stabilityai/stable-diffusion-xl-base-0.9</code></a></li>
<li><a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0"><code>stabilityai/stable-diffusion-xl-base-1.0</code></a></li>
<li><a href="https://huggingface.co/stabilityai/sdxl-turbo"><code>stabilityai/sdxl-turbo</code></a></li>
</ul>
</td>
</tr>
Expand Down
5 changes: 4 additions & 1 deletion src/python/openvino_genai/py_openvino_genai.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -1343,15 +1343,18 @@ class Scheduler:
FLOW_MATCH_EULER_DISCRETE
PNDM
EULER_ANCESTRAL_DISCRETE
"""
AUTO: typing.ClassVar[Scheduler.Type] # value = <Type.AUTO: 0>
DDIM: typing.ClassVar[Scheduler.Type] # value = <Type.DDIM: 3>
EULER_ANCESTRAL_DISCRETE: typing.ClassVar[Scheduler.Type] # value = <Type.EULER_ANCESTRAL_DISCRETE: 7>
EULER_DISCRETE: typing.ClassVar[Scheduler.Type] # value = <Type.EULER_DISCRETE: 4>
FLOW_MATCH_EULER_DISCRETE: typing.ClassVar[Scheduler.Type] # value = <Type.FLOW_MATCH_EULER_DISCRETE: 5>
LCM: typing.ClassVar[Scheduler.Type] # value = <Type.LCM: 1>
LMS_DISCRETE: typing.ClassVar[Scheduler.Type] # value = <Type.LMS_DISCRETE: 2>
PNDM: typing.ClassVar[Scheduler.Type] # value = <Type.PNDM: 6>
__members__: typing.ClassVar[dict[str, Scheduler.Type]] # value = {'AUTO': <Type.AUTO: 0>, 'LCM': <Type.LCM: 1>, 'LMS_DISCRETE': <Type.LMS_DISCRETE: 2>, 'DDIM': <Type.DDIM: 3>, 'EULER_DISCRETE': <Type.EULER_DISCRETE: 4>, 'FLOW_MATCH_EULER_DISCRETE': <Type.FLOW_MATCH_EULER_DISCRETE: 5>, 'PNDM': <Type.PNDM: 6>}
__members__: typing.ClassVar[dict[str, Scheduler.Type]] # value = {'AUTO': <Type.AUTO: 0>, 'LCM': <Type.LCM: 1>, 'LMS_DISCRETE': <Type.LMS_DISCRETE: 2>, 'DDIM': <Type.DDIM: 3>, 'EULER_DISCRETE': <Type.EULER_DISCRETE: 4>, 'FLOW_MATCH_EULER_DISCRETE': <Type.FLOW_MATCH_EULER_DISCRETE: 5>, 'PNDM': <Type.PNDM: 6>, 'EULER_ANCESTRAL_DISCRETE': <Type.EULER_ANCESTRAL_DISCRETE: 7>}
def __eq__(self, other: typing.Any) -> bool:
...
def __getstate__(self) -> int:
Expand Down
3 changes: 2 additions & 1 deletion src/python/py_image_generation_pipelines.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -198,7 +198,8 @@ void init_image_generation_pipelines(py::module_& m) {
.value("DDIM", ov::genai::Scheduler::Type::DDIM)
.value("EULER_DISCRETE", ov::genai::Scheduler::Type::EULER_DISCRETE)
.value("FLOW_MATCH_EULER_DISCRETE", ov::genai::Scheduler::Type::FLOW_MATCH_EULER_DISCRETE)
.value("PNDM", ov::genai::Scheduler::Type::PNDM);
.value("PNDM", ov::genai::Scheduler::Type::PNDM)
.value("EULER_ANCESTRAL_DISCRETE", ov::genai::Scheduler::Type::EULER_ANCESTRAL_DISCRETE);
image_generation_scheduler.def_static("from_config",
&ov::genai::Scheduler::from_config,
py::arg("scheduler_config_path"),
Expand Down
Loading

0 comments on commit 7a02d2b

Please sign in to comment.