Skip to content

Commit

Permalink
Merge releases/2024/3 into master (#720)
Browse files Browse the repository at this point in the history
Co-authored-by: Alina Kladieva <[email protected]>
Co-authored-by: Anastasiia Pnevskaia <[email protected]>
Co-authored-by: Nikita Malinin <[email protected]>
Co-authored-by: Yaroslav Tarkan <[email protected]>
Co-authored-by: Anatoliy Talamanov <[email protected]>
Co-authored-by: Pavel Esir <[email protected]>
Co-authored-by: Miłosz Żeglarski <[email protected]>
Co-authored-by: Pavel Esir <[email protected]>
Co-authored-by: Alexander Suvorov <[email protected]>
Co-authored-by: Xiake Sun <[email protected]>
Co-authored-by: Damian Kalinowski <[email protected]>
Co-authored-by: Andrei Kochin <[email protected]>
Co-authored-by: Ekaterina Aidova <[email protected]>
  • Loading branch information
14 people authored Aug 1, 2024
1 parent 3c8b770 commit 47fbb5e
Show file tree
Hide file tree
Showing 39 changed files with 1,619 additions and 225 deletions.
38 changes: 0 additions & 38 deletions Dockerfile

This file was deleted.

1 change: 1 addition & 0 deletions samples/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ add_subdirectory(cpp/greedy_causal_lm)
add_subdirectory(cpp/multinomial_causal_lm)
add_subdirectory(cpp/prompt_lookup_decoding_lm)
add_subdirectory(cpp/speculative_decoding_lm)
add_subdirectory(cpp/benchmark_genai)

install(FILES requirements.txt DESTINATION samples
COMPONENT cpp_samples_genai)
Expand Down
24 changes: 24 additions & 0 deletions samples/cpp/benchmark_genai/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
# Copyright (C) 2023-2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0


find_package(OpenVINOGenAI REQUIRED PATHS
"${CMAKE_BINARY_DIR}" # Reuse the package from the build.
${OpenVINO_DIR} # GenAI may be installed alogside OpenVINO.
)

FetchContent_Declare(cxxopts
URL https://github.com/jarro2783/cxxopts/archive/refs/tags/v3.1.1.tar.gz
URL_HASH SHA256=523175f792eb0ff04f9e653c90746c12655f10cb70f1d5e6d6d9491420298a08)
FetchContent_MakeAvailable(cxxopts)

add_executable(benchmark_genai benchmark_genai.cpp)
target_link_libraries(benchmark_genai PRIVATE openvino::genai cxxopts::cxxopts)
set_target_properties(benchmark_genai PROPERTIES
COMPILE_PDB_NAME benchmark_genai
# Ensure out of box LC_RPATH on macOS with SIP
INSTALL_RPATH_USE_LINK_PATH ON)
install(TARGETS benchmark_genai
RUNTIME DESTINATION samples_bin/
COMPONENT samples_bin
EXCLUDE_FROM_ALL)
47 changes: 47 additions & 0 deletions samples/cpp/benchmark_genai/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# LLMs benchmarking sample

This sample script demonstrates how to benchmark an LLMs in OpenVINO GenAI. The script includes functionality for warm-up iterations, generating text, and calculating various performance metrics.

## Download and convert the model and tokenizers

The `--upgrade-strategy eager` option is needed to ensure `optimum-intel` is upgraded to the latest version.

It's not required to install [../../requirements.txt](../../requirements.txt) for deployment if the model has already been exported.

```sh
pip install --upgrade-strategy eager -r ../../requirements.txt
optimum-cli export openvino --trust-remote-code --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0
```

## Usage

```sh
benchmark_vanilla_genai [OPTIONS]
```

### Options

- `-m, --model`: Path to the model and tokenizers base directory.
- `-p, --prompt` (default: `"The Sky is blue because"`): The prompt to generate text.
- `-nw, --num_warmup` (default: `1`): Number of warmup iterations.
- `-mt, --max_new_tokens` (default: `20`): Number of warmup iterations.
- `-n, --num_iter` (default: `3`): Number of iterations.
- `-d, --device` (default: `"CPU"`): Device to run the model on.

### Output:

```
benchmark_vanilla_genai -m TinyLlama-1.1B-Chat-v1.0 -n 10
```

```
Load time: 3405.69 ms
Generate time: 1430.77 ± 3.04 ms
Tokenization time: 0.51 ± 0.02 ms
Detokenization time: 0.37 ± 0.01 ms
TTFT: 81.60 ± 0.54 ms
TPOT: 71.52 ± 2.72 ms
Throughput tokens/s: 13.98 ± 0.53
```

For more information how performance metrics are calculated please follow [performance-metrics tutorial](../../../src/README.md#performance-metrics).
70 changes: 70 additions & 0 deletions samples/cpp/benchmark_genai/benchmark_genai.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
// Copyright (C) 2023-2024 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "openvino/genai/llm_pipeline.hpp"
#include <cxxopts.hpp>

int main(int argc, char* argv[]) try {
cxxopts::Options options("benchmark_vanilla_genai", "Help command");

options.add_options()
("m,model", "Path to model and tokenizers base directory", cxxopts::value<std::string>()->default_value("."))
("p,prompt", "Prompt", cxxopts::value<std::string>()->default_value("The Sky is blue because"))
("nw,num_warmup", "Number of warmup iterations", cxxopts::value<size_t>()->default_value(std::to_string(1)))
("n,num_iter", "Number of iterations", cxxopts::value<size_t>()->default_value(std::to_string(3)))
("mt,max_new_tokens", "Maximal number of new tokens", cxxopts::value<size_t>()->default_value(std::to_string(20)))
("d,device", "device", cxxopts::value<std::string>()->default_value("CPU"))
("h,help", "Print usage");

cxxopts::ParseResult result;
try {
result = options.parse(argc, argv);
} catch (const cxxopts::exceptions::exception& e) {
std::cout << e.what() << "\n\n";
std::cout << options.help() << std::endl;
return EXIT_FAILURE;
}

if (result.count("help")) {
std::cout << options.help() << std::endl;
return EXIT_SUCCESS;
}

std::string prompt = result["prompt"].as<std::string>();
const std::string model_path = result["model"].as<std::string>();
std::string device = result["device"].as<std::string>();
size_t num_warmup = result["num_warmup"].as<size_t>();
size_t num_iter = result["num_iter"].as<size_t>();

ov::genai::GenerationConfig config;
config.max_new_tokens = result["max_new_tokens"].as<size_t>();

ov::genai::LLMPipeline pipe(model_path, device);

for (size_t i = 0; i < num_warmup; i++)
pipe.generate(prompt, config);

ov::genai::DecodedResults res = pipe.generate(prompt, config);
ov::genai::PerfMetrics metrics = res.perf_metrics;
for (size_t i = 0; i < num_iter - 1; i++) {
res = pipe.generate(prompt, config);
metrics = metrics + res.perf_metrics;
}

std::cout << std::fixed << std::setprecision(2);
std::cout << "Load time: " << metrics.get_load_time() << " ms" << std::endl;
std::cout << "Generate time: " << metrics.get_generate_duration().mean << " ± " << metrics.get_generate_duration().std << " ms" << std::endl;
std::cout << "Tokenization time: " << metrics.get_tokenization_duration().mean << " ± " << metrics.get_tokenization_duration().std << " ms" << std::endl;
std::cout << "Detokenization time: " << metrics.get_detokenization_duration().mean << " ± " << metrics.get_detokenization_duration().std << " ms" << std::endl;
std::cout << "TTFT: " << metrics.get_ttft().mean << " ± " << metrics.get_ttft().std << " ms" << std::endl;
std::cout << "TPOT: " << metrics.get_tpot().mean << " ± " << metrics.get_tpot().std << " ms/token " << std::endl;
std::cout << "Throughput: " << metrics.get_throughput().mean << " ± " << metrics.get_throughput().std << " tokens/s" << std::endl;

return 0;
} catch (const std::exception& error) {
std::cerr << error.what() << '\n';
return EXIT_FAILURE;
} catch (...) {
std::cerr << "Non-exception object thrown\n";
return EXIT_FAILURE;
}
14 changes: 13 additions & 1 deletion samples/python/beam_search_causal_lm/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,20 @@ optimum-cli export openvino --trust-remote-code --model TinyLlama/TinyLlama-1.1B

`beam_search_causal_lm.py TinyLlama-1.1B-Chat-v1.0 "Why is the Sun yellow?"`

To enable Unicode characters for Windows cmd open `Region` settings from `Control panel`. `Administrative`->`Change system locale`->`Beta: Use Unicode UTF-8 for worldwide language support`->`OK`. Reboot.

Discrete GPUs (dGPUs) usually provide better performance compared to CPUs. It is recommended to run larger models on a dGPU with 32GB+ RAM. For example, the model meta-llama/Llama-2-13b-chat-hf can benefit from being run on a dGPU. Modify the source code to change the device for inference to the GPU.

See https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md#supported-models for the list of supported models.

### Troubleshooting

#### Unicode characters encoding error on Windows

Example error:
```
UnicodeEncodeError: 'charmap' codec can't encode character '\u25aa' in position 0: character maps to <undefined>
```

If you encounter the error described in the example when sample is printing output to the Windows console, it is likely due to the default Windows encoding not supporting certain Unicode characters. To resolve this:
1. Enable Unicode characters for Windows cmd - open `Region` settings from `Control panel`. `Administrative`->`Change system locale`->`Beta: Use Unicode UTF-8 for worldwide language support`->`OK`. Reboot.
2. Enable UTF-8 mode by setting environment variable `PYTHONIOENCODING="utf8"`.
47 changes: 47 additions & 0 deletions samples/python/benchmark_genai/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# LLMs benchmarking sample

This sample script demonstrates how to benchmark an LLMs in OpenVINO GenAI. The script includes functionality for warm-up iterations, generating text, and calculating various performance metrics.

## Download and convert the model and tokenizers

The `--upgrade-strategy eager` option is needed to ensure `optimum-intel` is upgraded to the latest version.

It's not required to install [../../requirements.txt](../../requirements.txt) for deployment if the model has already been exported.

```sh
pip install --upgrade-strategy eager -r ../../requirements.txt
optimum-cli export openvino --trust-remote-code --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0
```

## Usage

```sh
python benchmark_genai.py [OPTIONS]
```

### Options

- `-m, --model`: Path to the model and tokenizers base directory.
- `-p, --prompt` (default: `"The Sky is blue because"`): The prompt to generate text.
- `-nw, --num_warmup` (default: `1`): Number of warmup iterations.
- `-n, --num_iter` (default: `3`): Number of iterations.
- `-mt, --max_new_tokens` (default: `20`): Number of warmup iterations.
- `-d, --device` (default: `"CPU"`): Device to run the model on.

### Output:

```
python benchmark_genai.py -m TinyLlama-1.1B-Chat-v1.0 -n 10
```

```
Load time: 3405.69 ms
Generate time: 1430.77 ± 3.04 ms
Tokenization time: 0.51 ± 0.02 ms
Detokenization time: 0.37 ± 0.01 ms
TTFT: 81.60 ± 0.54 ms
TPOT: 71.52 ± 2.72 ms
Throughput tokens/s: 13.98 ± 0.53
```

For more information on how performance metrics are calculated, see [performance metrics readme](../../../src/README.md#performance-metrics).
49 changes: 49 additions & 0 deletions samples/python/benchmark_genai/benchmark_genai.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
# Copyright (C) 2023-2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import argparse
import openvino_genai as ov_genai

def main():
parser = argparse.ArgumentParser(description="Help command")
parser.add_argument("-m", "--model", type=str, help="Path to model and tokenizers base directory")
parser.add_argument("-p", "--prompt", type=str, default="The Sky is blue because", help="Prompt")
parser.add_argument("-nw", "--num_warmup", type=int, default=1, help="Number of warmup iterations")
parser.add_argument("-n", "--num_iter", type=int, default=2, help="Number of iterations")
parser.add_argument("-mt", "--max_new_tokens", type=int, default=20, help="Maximal number of new tokens")
parser.add_argument("-d", "--device", type=str, default="CPU", help="Device")

args = parser.parse_args()

# Perf metrics is stored in DecodedResults.
# In order to get DecodedResults instead of a string input should be a list.
prompt = [args.prompt]
model_path = args.model
device = args.device
num_warmup = args.num_warmup
num_iter = args.num_iter

config = ov_genai.GenerationConfig()
config.max_new_tokens = args.max_new_tokens

pipe = ov_genai.LLMPipeline(model_path, device)

for _ in range(num_warmup):
pipe.generate(prompt, config)

res = pipe.generate(prompt, config)
perf_metrics = res.perf_metrics
for _ in range(num_iter - 1):
res = pipe.generate(prompt, config)
perf_metrics += res.perf_metrics

print(f"Load time: {perf_metrics.get_load_time():.2f} ms")
print(f"Generate time: {perf_metrics.get_generate_duration().mean:.2f} ± {perf_metrics.get_generate_duration().std:.2f} ms")
print(f"Tokenization time: {perf_metrics.get_tokenization_duration().mean:.2f} ± {perf_metrics.get_tokenization_duration().std:.2f} ms")
print(f"Detokenization time: {perf_metrics.get_detokenization_duration().mean:.2f} ± {perf_metrics.get_detokenization_duration().std:.2f} ms")
print(f"TTFT: {perf_metrics.get_ttft().mean:.2f} ± {perf_metrics.get_ttft().std:.2f} ms")
print(f"TPOT: {perf_metrics.get_tpot().mean:.2f} ± {perf_metrics.get_tpot().std:.2f} ms")
print(f"Throughput : {perf_metrics.get_throughput().mean:.2f} ± {perf_metrics.get_throughput().std:.2f} tokens/s")

if __name__ == "__main__":
main()
16 changes: 13 additions & 3 deletions samples/python/chat_sample/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,15 +17,25 @@ optimum-cli export openvino --trust-remote-code --model TinyLlama/TinyLlama-1.1B

`chat_sample.py TinyLlama-1.1B-Chat-v1.0`

To enable Unicode characters for Windows cmd open `Region` settings from `Control panel`. `Administrative`->`Change system locale`->`Beta: Use Unicode UTF-8 for worldwide language support`->`OK`. Reboot.

Discrete GPUs (dGPUs) usually provide better performance compared to CPUs. It is recommended to run larger models on a dGPU with 32GB+ RAM. For example, the model meta-llama/Llama-2-13b-chat-hf can benefit from being run on a dGPU. Modify the source code to change the device for inference to the GPU.

See https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md#supported-models for the list of supported models.

### Troubleshooting

## Troubleshooting
### Missing chat template
#### Unicode characters encoding error on Windows

Example error:
```
UnicodeEncodeError: 'charmap' codec can't encode character '\u25aa' in position 0: character maps to <undefined>
```

If you encounter the error described in the example when sample is printing output to the Windows console, it is likely due to the default Windows encoding not supporting certain Unicode characters. To resolve this:
1. Enable Unicode characters for Windows cmd - open `Region` settings from `Control panel`. `Administrative`->`Change system locale`->`Beta: Use Unicode UTF-8 for worldwide language support`->`OK`. Reboot.
2. Enable UTF-8 mode by setting environment variable `PYTHONIOENCODING="utf8"`.

#### Missing chat template

If you encounter an exception indicating a missing "chat template" when launching the `ov::genai::LLMPipeline` in chat mode, it likely means the model was not tuned for chat functionality. To work this around, manually add the chat template to tokenizer_config.json of your model.
The following template can be used as a default, but it may not work properly with every model:
Expand Down
14 changes: 13 additions & 1 deletion samples/python/greedy_causal_lm/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,20 @@ optimum-cli export openvino --trust-remote-code --model TinyLlama/TinyLlama-1.1B

`greedy_causal_lm.py TinyLlama-1.1B-Chat-v1.0 "Why is the Sun yellow?"`

To enable Unicode characters for Windows cmd open `Region` settings from `Control panel`. `Administrative`->`Change system locale`->`Beta: Use Unicode UTF-8 for worldwide language support`->`OK`. Reboot.

Discrete GPUs (dGPUs) usually provide better performance compared to CPUs. It is recommended to run larger models on a dGPU with 32GB+ RAM. For example, the model meta-llama/Llama-2-13b-chat-hf can benefit from being run on a dGPU. Modify the source code to change the device for inference to the GPU.

See https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md#supported-models for the list of supported models.

### Troubleshooting

#### Unicode characters encoding error on Windows

Example error:
```
UnicodeEncodeError: 'charmap' codec can't encode character '\u25aa' in position 0: character maps to <undefined>
```

If you encounter the error described in the example when sample is printing output to the Windows console, it is likely due to the default Windows encoding not supporting certain Unicode characters. To resolve this:
1. Enable Unicode characters for Windows cmd - open `Region` settings from `Control panel`. `Administrative`->`Change system locale`->`Beta: Use Unicode UTF-8 for worldwide language support`->`OK`. Reboot.
2. Enable UTF-8 mode by setting environment variable `PYTHONIOENCODING="utf8"`.
14 changes: 13 additions & 1 deletion samples/python/multinomial_causal_lm/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,20 @@ optimum-cli export openvino --trust-remote-code --model TinyLlama/TinyLlama-1.1B

`multinomial_causal_lm.py TinyLlama-1.1B-Chat-v1.0 "Why is the Sun yellow?"`

To enable Unicode characters for Windows cmd open `Region` settings from `Control panel`. `Administrative`->`Change system locale`->`Beta: Use Unicode UTF-8 for worldwide language support`->`OK`. Reboot.

Discrete GPUs (dGPUs) usually provide better performance compared to CPUs. It is recommended to run larger models on a dGPU with 32GB+ RAM. For example, the model meta-llama/Llama-2-13b-chat-hf can benefit from being run on a dGPU. Modify the source code to change the device for inference to the GPU.

See https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md#supported-models for the list of supported models.

### Troubleshooting

#### Unicode characters encoding error on Windows

Example error:
```
UnicodeEncodeError: 'charmap' codec can't encode character '\u25aa' in position 0: character maps to <undefined>
```

If you encounter the error described in the example when sample is printing output to the Windows console, it is likely due to the default Windows encoding not supporting certain Unicode characters. To resolve this:
1. Enable Unicode characters for Windows cmd - open `Region` settings from `Control panel`. `Administrative`->`Change system locale`->`Beta: Use Unicode UTF-8 for worldwide language support`->`OK`. Reboot.
2. Enable UTF-8 mode by setting environment variable `PYTHONIOENCODING="utf8"`.
Loading

0 comments on commit 47fbb5e

Please sign in to comment.