Skip to content

Commit

Permalink
Merge pull request #5920 from openjournals/joss.06036
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Sep 26, 2024
2 parents 3998eaf + 2a4537a commit ff458fd
Show file tree
Hide file tree
Showing 7 changed files with 4,598 additions and 0 deletions.
297 changes: 297 additions & 0 deletions joss.06036/10.21105.joss.06036.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,297 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240926142430-2f941ff349f977ae6946c70d6239902f850e83e6</doi_batch_id>
<timestamp>20240926142430</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>09</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>101</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>State-Averaged Orbital-Optimized VQE: A quantum
algorithm for the democratic description of ground and excited
electronic states</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Martin</given_name>
<surname>Beseda</surname>
<ORCID>https://orcid.org/0000-0001-5792-2872</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Silvie</given_name>
<surname>Illésová</surname>
<ORCID>https://orcid.org/0009-0002-5231-3714</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Saad</given_name>
<surname>Yalouz</surname>
<ORCID>https://orcid.org/0000-0002-8818-3379</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Bruno</given_name>
<surname>Senjean</surname>
<ORCID>https://orcid.org/0000-0003-1706-015X</ORCID>
</person_name>
</contributors>
<publication_date>
<month>09</month>
<day>26</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6036</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06036</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.13840953</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6036</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06036</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06036</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06036.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="omiya2022analytical">
<article_title>Analytical energy gradient for state-averaged
orbital-optimized variational quantum eigensolvers and its application
to a photochemical reaction</article_title>
<author>Omiya</author>
<journal_title>Journal of Chemical Theory and
Computation</journal_title>
<issue>2</issue>
<volume>18</volume>
<doi>10.1021/acs.jctc.1c00877</doi>
<cYear>2022</cYear>
<unstructured_citation>Omiya, K., Nakagawa, Y. O., Koh, S.,
Mizukami, W., Gao, Q., &amp; Kobayashi, T. (2022). Analytical energy
gradient for state-averaged orbital-optimized variational quantum
eigensolvers and its application to a photochemical reaction. Journal of
Chemical Theory and Computation, 18(2), 741–748.
https://doi.org/10.1021/acs.jctc.1c00877</unstructured_citation>
</citation>
<citation key="malmqvist1989casscf">
<article_title>The CASSCF state interaction
method</article_title>
<author>Malmqvist</author>
<journal_title>Chemical physics letters</journal_title>
<issue>2</issue>
<volume>155</volume>
<doi>10.1016/0009-2614(89)85347-3</doi>
<cYear>1989</cYear>
<unstructured_citation>Malmqvist, P.-Å., &amp; Roos, B. O.
(1989). The CASSCF state interaction method. Chemical Physics Letters,
155(2), 189–194.
https://doi.org/10.1016/0009-2614(89)85347-3</unstructured_citation>
</citation>
<citation key="li2023openmolcas">
<article_title>The OpenMolcas web: A community-driven
approach to advancing computational chemistry</article_title>
<author>Li Manni</author>
<journal_title>Journal of Chemical Theory and
Computation</journal_title>
<doi>10.1021/acs.jctc.3c00182</doi>
<cYear>2023</cYear>
<unstructured_citation>Li Manni, G., Fdez. Galván, I.,
Alavi, A., Aleotti, F., Aquilante, F., Autschbach, J., Avagliano, D.,
Baiardi, A., Bao, J. J., Battaglia, S., &amp; others. (2023). The
OpenMolcas web: A community-driven approach to advancing computational
chemistry. Journal of Chemical Theory and Computation.
https://doi.org/10.1021/acs.jctc.3c00182</unstructured_citation>
</citation>
<citation key="yalouz2022analytical">
<article_title>Analytical nonadiabatic couplings and
gradients within the state-averaged orbital-optimized variational
quantum eigensolver</article_title>
<author>Yalouz</author>
<journal_title>Journal of chemical theory and
computation</journal_title>
<issue>2</issue>
<volume>18</volume>
<doi>10.1021/acs.jctc.1c00995</doi>
<cYear>2022</cYear>
<unstructured_citation>Yalouz, S., Koridon, E., Senjean, B.,
Lasorne, B., Buda, F., &amp; Visscher, L. (2022). Analytical
nonadiabatic couplings and gradients within the state-averaged
orbital-optimized variational quantum eigensolver. Journal of Chemical
Theory and Computation, 18(2), 776–794.
https://doi.org/10.1021/acs.jctc.1c00995</unstructured_citation>
</citation>
<citation key="yalouz2021state">
<article_title>A state-averaged orbital-optimized hybrid
quantum–classical algorithm for a democratic description of ground and
excited states</article_title>
<author>Yalouz</author>
<journal_title>Quantum Science and
Technology</journal_title>
<issue>2</issue>
<volume>6</volume>
<doi>10.1088/2058-9565/abd334</doi>
<cYear>2021</cYear>
<unstructured_citation>Yalouz, S., Senjean, B., Günther, J.,
Buda, F., O’Brien, T. E., &amp; Visscher, L. (2021). A state-averaged
orbital-optimized hybrid quantum–classical algorithm for a democratic
description of ground and excited states. Quantum Science and
Technology, 6(2), 024004.
https://doi.org/10.1088/2058-9565/abd334</unstructured_citation>
</citation>
<citation key="takeshita2020increasing">
<article_title>Increasing the representation accuracy of
quantum simulations of chemistry without extra quantum
resources</article_title>
<author>Takeshita</author>
<journal_title>Physical Review X</journal_title>
<issue>1</issue>
<volume>10</volume>
<doi>10.1103/PhysRevX.10.011004</doi>
<cYear>2020</cYear>
<unstructured_citation>Takeshita, T., Rubin, N. C., Jiang,
Z., Lee, E., Babbush, R., &amp; McClean, J. R. (2020). Increasing the
representation accuracy of quantum simulations of chemistry without
extra quantum resources. Physical Review X, 10(1), 011004.
https://doi.org/10.1103/PhysRevX.10.011004</unstructured_citation>
</citation>
<citation key="park2019analytical">
<article_title>Analytical gradient theory for
quasidegenerate n-electron valence state perturbation theory
(QD-NEVPT2)</article_title>
<author>Park</author>
<journal_title>Journal of chemical theory and
computation</journal_title>
<issue>1</issue>
<volume>16</volume>
<doi>10.1021/acs.jctc.9b00919</doi>
<cYear>2019</cYear>
<unstructured_citation>Park, J. W. (2019). Analytical
gradient theory for quasidegenerate n-electron valence state
perturbation theory (QD-NEVPT2). Journal of Chemical Theory and
Computation, 16(1), 326–339.
https://doi.org/10.1021/acs.jctc.9b00919</unstructured_citation>
</citation>
<citation key="granovsky2011extended">
<article_title>Extended multi-configuration quasi-degenerate
perturbation theory: The new approach to multi-state multi-reference
perturbation theory</article_title>
<author>Granovsky</author>
<journal_title>The Journal of chemical
physics</journal_title>
<issue>21</issue>
<volume>134</volume>
<doi>10.1063/1.3596699</doi>
<cYear>2011</cYear>
<unstructured_citation>Granovsky, A. A. (2011). Extended
multi-configuration quasi-degenerate perturbation theory: The new
approach to multi-state multi-reference perturbation theory. The Journal
of Chemical Physics, 134(21), 214113.
https://doi.org/10.1063/1.3596699</unstructured_citation>
</citation>
<citation key="helgaker2013molecular">
<volume_title>Molecular electronic-structure
theory</volume_title>
<author>Helgaker</author>
<doi>10.1002/9781119019572</doi>
<cYear>2013</cYear>
<unstructured_citation>Helgaker, T., Jorgensen, P., &amp;
Olsen, J. (2013). Molecular electronic-structure theory. John Wiley
&amp; Sons.
https://doi.org/10.1002/9781119019572</unstructured_citation>
</citation>
<citation key="bauer2020quantum">
<article_title>Quantum algorithms for quantum chemistry and
quantum materials science</article_title>
<author>Bauer</author>
<journal_title>Chemical Reviews</journal_title>
<issue>22</issue>
<volume>120</volume>
<doi>10.1021/acs.chemrev.9b00829</doi>
<cYear>2020</cYear>
<unstructured_citation>Bauer, B., Bravyi, S., Motta, M.,
&amp; Chan, G. K.-L. (2020). Quantum algorithms for quantum chemistry
and quantum materials science. Chemical Reviews, 120(22), 12685–12717.
https://doi.org/10.1021/acs.chemrev.9b00829</unstructured_citation>
</citation>
<citation key="mcardle2020quantum">
<article_title>Quantum computational
chemistry</article_title>
<author>McArdle</author>
<journal_title>Reviews of Modern Physics</journal_title>
<issue>1</issue>
<volume>92</volume>
<doi>10.1103/RevModPhys.92.015003</doi>
<cYear>2020</cYear>
<unstructured_citation>McArdle, S., Endo, S., Aspuru-Guzik,
A., Benjamin, S. C., &amp; Yuan, X. (2020). Quantum computational
chemistry. Reviews of Modern Physics, 92(1), 015003.
https://doi.org/10.1103/RevModPhys.92.015003</unstructured_citation>
</citation>
<citation key="reiher2017elucidating">
<article_title>Elucidating reaction mechanisms on quantum
computers</article_title>
<author>Reiher</author>
<journal_title>Proceedings of the national academy of
sciences</journal_title>
<issue>29</issue>
<volume>114</volume>
<doi>10.1073/pnas.1619152114</doi>
<cYear>2017</cYear>
<unstructured_citation>Reiher, M., Wiebe, N., Svore, K. M.,
Wecker, D., &amp; Troyer, M. (2017). Elucidating reaction mechanisms on
quantum computers. Proceedings of the National Academy of Sciences,
114(29), 7555–7560.
https://doi.org/10.1073/pnas.1619152114</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06036/10.21105.joss.06036.pdf
Binary file not shown.
Loading

0 comments on commit ff458fd

Please sign in to comment.