Skip to content

Commit

Permalink
Merge pull request #5753 from openjournals/joss.06948
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Aug 10, 2024
2 parents 1ebabb5 + 328d291 commit fa92328
Show file tree
Hide file tree
Showing 3 changed files with 690 additions and 0 deletions.
243 changes: 243 additions & 0 deletions joss.06948/10.21105.joss.06948.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,243 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240810001024-ffc7d83ff54973f98308df23e5814a4b76b97187</doi_batch_id>
<timestamp>20240810001024</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>08</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>100</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>small_gicp: Efficient and parallel algorithms for point
cloud registration</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Kenji</given_name>
<surname>Koide</surname>
<ORCID>https://orcid.org/0000-0001-5361-1428</ORCID>
</person_name>
</contributors>
<publication_date>
<month>08</month>
<day>10</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6948</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06948</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.13283012</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6948</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06948</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06948</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06948.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Rusu">
<article_title>3D is here: Point cloud library
(PCL)</article_title>
<author>Rusu</author>
<journal_title>IEEE International Conference on Robotics and
Automation (ICRA2011)</journal_title>
<doi>10.1109/ICRA.2011.5980567</doi>
<cYear>2011</cYear>
<unstructured_citation>Rusu, R. B., &amp; Cousins, S. (2011,
May). 3D is here: Point cloud library (PCL). IEEE International
Conference on Robotics and Automation (ICRA2011).
https://doi.org/10.1109/ICRA.2011.5980567</unstructured_citation>
</citation>
<citation key="Zhou">
<article_title>Open3D: A modern library for 3D data
processing</article_title>
<author>Zhou</author>
<journal_title>arXiv:1801.09847</journal_title>
<doi>10.48550/arXiv.1801.09847</doi>
<cYear>2018</cYear>
<unstructured_citation>Zhou, Q.-Y., Park, J., &amp; Koltun,
V. (2018). Open3D: A modern library for 3D data processing.
arXiv:1801.09847.
https://doi.org/10.48550/arXiv.1801.09847</unstructured_citation>
</citation>
<citation key="Bai">
<article_title>Faster-LIO: Lightweight tightly coupled
lidar-inertial odometry using parallel sparse incremental
voxels</article_title>
<author>Bai</author>
<journal_title>IEEE Robotics and Automation
Letters</journal_title>
<issue>2</issue>
<volume>7</volume>
<doi>10.1109/LRA.2022.3152830</doi>
<cYear>2022</cYear>
<unstructured_citation>Bai, C., Xiao, T., Chen, Y., Wang,
H., Zhang, F., &amp; Gao, X. (2022). Faster-LIO: Lightweight tightly
coupled lidar-inertial odometry using parallel sparse incremental
voxels. IEEE Robotics and Automation Letters, 7(2), 4861–4868.
https://doi.org/10.1109/LRA.2022.3152830</unstructured_citation>
</citation>
<citation key="Koide">
<article_title>Voxelized GICP for fast and accurate 3D point
cloud registration</article_title>
<author>Kenji Koide</author>
<journal_title>IEEE international conference on robotics and
automation (ICRA2021)</journal_title>
<doi>10.1109/ICRA48506.2021.9560835</doi>
<cYear>2021</cYear>
<unstructured_citation>Kenji Koide, S. O., Masashi Yokozuka,
&amp; Banno, A. (2021). Voxelized GICP for fast and accurate 3D point
cloud registration. IEEE International Conference on Robotics and
Automation (ICRA2021), 11054–11059.
https://doi.org/10.1109/ICRA48506.2021.9560835</unstructured_citation>
</citation>
<citation key="Zhang">
<article_title>Iterative point matching for registration of
free-form curves and surfaces</article_title>
<author>Zhang</author>
<journal_title>International journal of computer
vision</journal_title>
<issue>2</issue>
<volume>13</volume>
<doi>10.1007/BF01427149</doi>
<cYear>1994</cYear>
<unstructured_citation>Zhang, Z. (1994). Iterative point
matching for registration of free-form curves and surfaces.
International Journal of Computer Vision, 13(2), 119–152.
https://doi.org/10.1007/BF01427149</unstructured_citation>
</citation>
<citation key="Segal">
<article_title>Generalized-ICP</article_title>
<author>Segal</author>
<journal_title>Robotics: Science and systems</journal_title>
<volume>2</volume>
<doi>10.15607/rss.2009.v.021</doi>
<cYear>2009</cYear>
<unstructured_citation>Segal, A., Haehnel, D., &amp; Thrun,
S. (2009). Generalized-ICP. Robotics: Science and Systems, 2, 435.
https://doi.org/10.15607/rss.2009.v.021</unstructured_citation>
</citation>
<citation key="Wang">
<article_title>Intensity scan context: Coding intensity and
geometry relations for loop closure detection</article_title>
<author>Wang</author>
<journal_title>IEEE international conference on robotics and
automation (ICRA2020)</journal_title>
<doi>10.1109/ICRA40945.2020.9196764</doi>
<cYear>2020</cYear>
<unstructured_citation>Wang, H., Wang, C., &amp; Xie, L.
(2020). Intensity scan context: Coding intensity and geometry relations
for loop closure detection. IEEE International Conference on Robotics
and Automation (ICRA2020), 2095–2101.
https://doi.org/10.1109/ICRA40945.2020.9196764</unstructured_citation>
</citation>
<citation key="Izadinia">
<article_title>Scene recomposition by learning-based
ICP</article_title>
<author>Izadinia</author>
<journal_title>IEEE/CVF conference on computer vision and
pattern recognition (CVPR2020)</journal_title>
<doi>10.1109/cvpr42600.2020.00101</doi>
<cYear>2020</cYear>
<unstructured_citation>Izadinia, H., &amp; Seitz, S. M.
(2020). Scene recomposition by learning-based ICP. IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR2020), 930–939.
https://doi.org/10.1109/cvpr42600.2020.00101</unstructured_citation>
</citation>
<citation key="Kim">
<article_title>Tunnel facility based vehicle localization in
highway tunnel using 3D LIDAR</article_title>
<author>Kim</author>
<journal_title>IEEE Transactions on Intelligent
Transportation Systems</journal_title>
<issue>10</issue>
<volume>23</volume>
<doi>10.1109/TITS.2022.3160235</doi>
<cYear>2022</cYear>
<unstructured_citation>Kim, K., Im, J., &amp; Jee, G.
(2022). Tunnel facility based vehicle localization in highway tunnel
using 3D LIDAR. IEEE Transactions on Intelligent Transportation Systems,
23(10), 17575–17583.
https://doi.org/10.1109/TITS.2022.3160235</unstructured_citation>
</citation>
<citation key="Pomerleau">
<article_title>Comparing ICP variants on real-world data
sets</article_title>
<author>Pomerleau</author>
<journal_title>Autonomous Robots</journal_title>
<issue>3</issue>
<volume>34</volume>
<doi>10.1007/s10514-013-9327-2</doi>
<cYear>2013</cYear>
<unstructured_citation>Pomerleau, F., Colas, F., Siegwart,
R., &amp; Magnenat, S. (2013). Comparing ICP variants on real-world data
sets. Autonomous Robots, 34(3), 133–148.
https://doi.org/10.1007/s10514-013-9327-2</unstructured_citation>
</citation>
<citation key="Serafin">
<article_title>NICP: Dense normal based point cloud
registration</article_title>
<author>Serafin</author>
<journal_title>IEEE/RSJ international conference on
intelligent robots and systems (IROS2015)</journal_title>
<doi>10.1109/IROS.2015.7353455</doi>
<cYear>2015</cYear>
<unstructured_citation>Serafin, J., &amp; Grisetti, G.
(2015). NICP: Dense normal based point cloud registration. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS2015),
742–749.
https://doi.org/10.1109/IROS.2015.7353455</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06948/10.21105.joss.06948.pdf
Binary file not shown.
Loading

0 comments on commit fa92328

Please sign in to comment.