Skip to content

Commit

Permalink
Merge pull request #4715 from openjournals/joss.05251
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Oct 23, 2023
2 parents 917774e + a28cd97 commit f0b8af9
Show file tree
Hide file tree
Showing 3 changed files with 699 additions and 0 deletions.
273 changes: 273 additions & 0 deletions joss.05251/10.21105.joss.05251.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,273 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20231023T095629-e4d2dccd0cdf57c418f62f937abc823958bacfe1</doi_batch_id>
<timestamp>20231023095629</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>10</month>
<year>2023</year>
</publication_date>
<journal_volume>
<volume>8</volume>
</journal_volume>
<issue>90</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>ReSurfEMG: A Python library for preprocessing and
analysis of respiratory EMG.</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Candace Makeda</given_name>
<surname>Moore</surname>
<ORCID>https://orcid.org/0000-0003-1672-7565</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Walter</given_name>
<surname>Baccinelli</surname>
<ORCID>https://orcid.org/0000-0001-8888-4792</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Oleg</given_name>
<surname>Sivokon</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Robertus Simon Petrus</given_name>
<surname>Warnaar</surname>
<ORCID>https://orcid.org/0000-0001-9443-4069</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Eline</given_name>
<surname>Oppersma</surname>
<ORCID>https://orcid.org/0000-0002-0150-306X</ORCID>
</person_name>
</contributors>
<publication_date>
<month>10</month>
<day>23</day>
<year>2023</year>
</publication_date>
<pages>
<first_page>5251</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05251</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.8429265</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5251</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05251</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05251</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05251.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="HODGES1996511">
<article_title>A comparison of computer-based methods for
the determination of onset of muscle contraction using
electromyography</article_title>
<author>Hodges</author>
<journal_title>Electroencephalography and Clinical
Neurophysiology/Electromyography and Motor Control</journal_title>
<issue>6</issue>
<volume>101</volume>
<doi>10.1016/S0921-884X(96)95190-5</doi>
<issn>0924-980X</issn>
<cYear>1996</cYear>
<unstructured_citation>Hodges, P. W., &amp; Bui, B. H.
(1996). A comparison of computer-based methods for the determination of
onset of muscle contraction using electromyography.
Electroencephalography and Clinical Neurophysiology/Electromyography and
Motor Control, 101(6), 511–519.
https://doi.org/10.1016/S0921-884X(96)95190-5</unstructured_citation>
</citation>
<citation key="661154">
<article_title>A statistical method for the measurement of
muscle activation intervals from surface myoelectric signal during
gait</article_title>
<author>Bonato</author>
<journal_title>IEEE Transactions on Biomedical
Engineering</journal_title>
<issue>3</issue>
<volume>45</volume>
<doi>10.1109/10.661154</doi>
<cYear>1998</cYear>
<unstructured_citation>Bonato, P., D’Alessio, T., &amp;
Knaflitz, M. (1998). A statistical method for the measurement of muscle
activation intervals from surface myoelectric signal during gait. IEEE
Transactions on Biomedical Engineering, 45(3), 287–299.
https://doi.org/10.1109/10.661154</unstructured_citation>
</citation>
<citation key="LIDIERTH1986378">
<article_title>A computer based method for automated
measurement of the periods of muscular activity from an EMG and its
application to locomotor EMGs</article_title>
<author>Lidierth</author>
<journal_title>Electroencephalography and Clinical
Neurophysiology</journal_title>
<issue>4</issue>
<volume>64</volume>
<doi>10.1016/0013-4694(86)90163-X</doi>
<issn>0013-4694</issn>
<cYear>1986</cYear>
<unstructured_citation>Lidierth, M. (1986). A computer based
method for automated measurement of the periods of muscular activity
from an EMG and its application to locomotor EMGs.
Electroencephalography and Clinical Neurophysiology, 64(4), 378–380.
https://doi.org/10.1016/0013-4694(86)90163-X</unstructured_citation>
</citation>
<citation key="https://doi.org/10.1046/j.1365-2842.1998.00242.x">
<article_title>Detection of onset and termination of muscle
activity in surface electromyograms</article_title>
<author>Abbink</author>
<journal_title>Journal of Oral
Rehabilitation</journal_title>
<issue>5</issue>
<volume>25</volume>
<doi>10.1046/j.1365-2842.1998.00242.x</doi>
<cYear>1998</cYear>
<unstructured_citation>Abbink, Bilt, V. D., &amp; Glas, V.
D. (1998). Detection of onset and termination of muscle activity in
surface electromyograms. Journal of Oral Rehabilitation, 25(5), 365–369.
https://doi.org/10.1046/j.1365-2842.1998.00242.x</unstructured_citation>
</citation>
<citation key="Solnik2010">
<article_title>Teager–kaiser energy operator signal
conditioning improves EMG onset detection</article_title>
<author>Solnik</author>
<journal_title>European Journal of Applied
Physiology</journal_title>
<issue>3</issue>
<volume>110</volume>
<doi>10.1007/s00421-010-1521-8</doi>
<issn>1439-6327</issn>
<cYear>2010</cYear>
<unstructured_citation>Solnik, S., Rider, P., Steinweg, K.,
DeVita, P., &amp; Hortobágyi, T. (2010). Teager–kaiser energy operator
signal conditioning improves EMG onset detection. European Journal of
Applied Physiology, 110(3), 489–498.
https://doi.org/10.1007/s00421-010-1521-8</unstructured_citation>
</citation>
<citation key="10.1007/978-3-642-34546-3_71">
<article_title>Towards improving the usability of
electromyographic interfaces</article_title>
<author>Silva</author>
<journal_title>Converging clinical and engineering research
on neurorehabilitation</journal_title>
<doi>10.1007/978-3-642-34546-3_71</doi>
<isbn>978-3-642-34546-3</isbn>
<cYear>2013</cYear>
<unstructured_citation>Silva, H., Scherer, R., Sousa, J.,
&amp; Londral, A. (2013). Towards improving the usability of
electromyographic interfaces. In J. L. Pons, D. Torricelli, &amp; M.
Pajaro (Eds.), Converging clinical and engineering research on
neurorehabilitation (pp. 437–441). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-34546-3_71</unstructured_citation>
</citation>
<citation key="londral2013wireless">
<article_title>A wireless user-computer interface to explore
various sources of biosignals and visual biofeedback for severe motor
impairment</article_title>
<author>Londral</author>
<journal_title>Journal of acessibility and design for
all</journal_title>
<issue>2</issue>
<volume>3</volume>
<cYear>2013</cYear>
<unstructured_citation>Londral, A., Silva, H., Nunes, N.,
Carvalho, M., &amp; Azevedo, L. (2013). A wireless user-computer
interface to explore various sources of biosignals and visual
biofeedback for severe motor impairment. Journal of Acessibility and
Design for All, 3(2), 118–134.
https://www.raco.cat/index.php/JACCES/article/view/315915</unstructured_citation>
</citation>
<citation key="Makowski2021">
<article_title>NeuroKit2: A python toolbox for
neurophysiological signal processing</article_title>
<author>Makowski</author>
<journal_title>Behavior Research Methods</journal_title>
<issue>4</issue>
<volume>53</volume>
<doi>10.3758/s13428-020-01516-y</doi>
<issn>1554-3528</issn>
<cYear>2021</cYear>
<unstructured_citation>Makowski, D., Pham, T., Lau, Z. J.,
Brammer, J. C., Lespinasse, F., Pham, H., Schölzel, C., &amp; Chen, S.
H. A. (2021). NeuroKit2: A python toolbox for neurophysiological signal
processing. Behavior Research Methods, 53(4), 1689–1696.
https://doi.org/10.3758/s13428-020-01516-y</unstructured_citation>
</citation>
<citation key="Wu2022">
<article_title>Pyemgpipeline: A python package for
electromyography processing</article_title>
<author>Wu</author>
<journal_title>Journal of Open Source
Software</journal_title>
<issue>72</issue>
<volume>7</volume>
<doi>10.21105/joss.04156</doi>
<cYear>2022</cYear>
<unstructured_citation>Wu, T.-L., Alhossary, A. A., Pataky,
T. C., Ang, W. T., &amp; Donnelly, C. J. (2022). Pyemgpipeline: A python
package for electromyography processing. Journal of Open Source
Software, 7(72), 4156.
https://doi.org/10.21105/joss.04156</unstructured_citation>
</citation>
<citation key="Carreiras2015biosppy">
<article_title>BioSPPy: Biosignal processing in
Python</article_title>
<author>Carreiras</author>
<unstructured_citation>Carreiras, C., Alves, A. P.,
Lourenço, A., Canento, F., Silva, H., Fred, A., &amp; others. (2015--).
BioSPPy: Biosignal processing in Python.
https://github.com/PIA-Group/BioSPPy/</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit f0b8af9

Please sign in to comment.