Skip to content

Commit

Permalink
Merge pull request #5815 from openjournals/joss.07025
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Aug 26, 2024
2 parents bb9dece + 0db0c66 commit ef70f00
Show file tree
Hide file tree
Showing 5 changed files with 1,020 additions and 0 deletions.
367 changes: 367 additions & 0 deletions joss.07025/10.21105.joss.07025.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,367 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240826175503-820d1c05489a38c616848342406b725c19c2c663</doi_batch_id>
<timestamp>20240826175503</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>08</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>100</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>HyperCoast: A Python Package for Visualizing and
Analyzing Hyperspectral Data in Coastal Environments</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Bingqing</given_name>
<surname>Liu</surname>
<ORCID>https://orcid.org/0000-0003-4651-6996</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Qiusheng</given_name>
<surname>Wu</surname>
<ORCID>https://orcid.org/0000-0001-5437-4073</ORCID>
</person_name>
</contributors>
<publication_date>
<month>08</month>
<day>26</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>7025</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.07025</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.13368024</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/7025</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.07025</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.07025</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.07025.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Wu2021">
<article_title>Leafmap: A Python Package for Interactive
Mapping and Geospatial Analysis with Minimal Coding in a Jupyter
Environment</article_title>
<author>Wu</author>
<journal_title>Journal of Open Source
Software</journal_title>
<doi>10.21105/joss.03414</doi>
<cYear>2021</cYear>
<unstructured_citation>Wu, Q. (2021). Leafmap: A Python
Package for Interactive Mapping and Geospatial Analysis with Minimal
Coding in a Jupyter Environment. Journal of Open Source Software.
https://doi.org/10.21105/joss.03414</unstructured_citation>
</citation>
<citation key="Sullivan2019">
<article_title>PyVista: 3D Plotting and Mesh Analysis
Through a Streamlined Interface for the Visualization Toolkit
(VTK)</article_title>
<author>Sullivan</author>
<journal_title>Journal of Open Source
Software</journal_title>
<issue>37</issue>
<volume>4</volume>
<doi>10.21105/joss.01450</doi>
<issn>2475-9066</issn>
<cYear>2019</cYear>
<unstructured_citation>Sullivan, C., &amp; Kaszynski, A.
(2019). PyVista: 3D Plotting and Mesh Analysis Through a Streamlined
Interface for the Visualization Toolkit (VTK). Journal of Open Source
Software, 4(37), 1450.
https://doi.org/10.21105/joss.01450</unstructured_citation>
</citation>
<citation key="De_La_Pena2017">
<article_title>Hyperspy/Hyperspy: HyperSpy
1.3</article_title>
<author>De La Peña</author>
<journal_title>Zenodo</journal_title>
<doi>10.5281/zenodo.583693</doi>
<cYear>2017</cYear>
<unstructured_citation>De La Peña, F., Ostasevicius, T.,
Tonaas Fauske, V., Burdet, P., Jokubauskas, P., Nord, M., Prestat, E.,
Sarahan, M., MacArthur, K. E., Johnstone, D. N., Taillon, J., Caron, J.,
Furnival, T., Eljarrat, A., Mazzucco, S., Migunov, V., Aarholt, T.,
Walls, M., Winkler, F., … Chang, H.-W. (2017). Hyperspy/Hyperspy:
HyperSpy 1.3. In Zenodo. Zenodo.
https://doi.org/10.5281/zenodo.583693</unstructured_citation>
</citation>
<citation key="Gorman2019">
<article_title>The NASA Plankton, Aerosol, Cloud, Ocean
Ecosystem (PACE) Mission: An Emerging Era of Global, Hyperspectral Earth
System Remote Sensing</article_title>
<author>Gorman</author>
<journal_title>Sensors, Systems, and Next-Generation
Satellites XXIII</journal_title>
<volume>11151</volume>
<doi>10.1117/12.2537146</doi>
<cYear>2019</cYear>
<unstructured_citation>Gorman, E. T., Kubalak, D. A., Patel,
D., Dress, A., Mott, D. B., Meister, G., &amp; Jeremy Werdell, P.
(2019). The NASA Plankton, Aerosol, Cloud, Ocean Ecosystem (PACE)
Mission: An Emerging Era of Global, Hyperspectral Earth System Remote
Sensing. Sensors, Systems, and Next-Generation Satellites XXIII, 11151,
78–84. https://doi.org/10.1117/12.2537146</unstructured_citation>
</citation>
<citation key="Green2021">
<article_title>NASA’s Earth Surface Mineral Dust Source
Investigation: An Earth Venture Imaging Spectrometer Science
Mission</article_title>
<author>Green</author>
<journal_title>2021 IEEE International Geoscience and Remote
Sensing Symposium IGARSS</journal_title>
<doi>10.1109/IGARSS47720.2021.9554217</doi>
<issn>2153-7003</issn>
<isbn>9781665403689</isbn>
<cYear>2021</cYear>
<unstructured_citation>Green, R. O., Thompson, D. R., &amp;
EMIT Team. (2021). NASA’s Earth Surface Mineral Dust Source
Investigation: An Earth Venture Imaging Spectrometer Science Mission.
2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS,
119–122.
https://doi.org/10.1109/IGARSS47720.2021.9554217</unstructured_citation>
</citation>
<citation key="Green1998">
<article_title>Imaging Spectroscopy and the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS)</article_title>
<author>Green</author>
<journal_title>Remote Sensing of Environment</journal_title>
<issue>3</issue>
<volume>65</volume>
<doi>10.1016/S0034-4257(98)00064-9</doi>
<issn>0034-4257</issn>
<cYear>1998</cYear>
<unstructured_citation>Green, R. O., Eastwood, M. L.,
Sarture, C. M., Chrien, T. G., Aronsson, M., Chippendale, B. J., Faust,
J. A., Pavri, B. E., Chovit, C. J., Solis, M., Olah, M. R., &amp;
Williams, O. (1998). Imaging Spectroscopy and the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing of
Environment, 65(3), 227–248.
https://doi.org/10.1016/S0034-4257(98)00064-9</unstructured_citation>
</citation>
<citation key="Alonso2019">
<article_title>Data Products, Quality and Validation of the
DLR Earth Sensing Imaging Spectrometer (DESIS)</article_title>
<author>Alonso</author>
<journal_title>Sensors</journal_title>
<issue>20</issue>
<volume>19</volume>
<doi>10.3390/s19204471</doi>
<issn>1424-8220</issn>
<cYear>2019</cYear>
<unstructured_citation>Alonso, K., Bachmann, M., Burch, K.,
Carmona, E., Cerra, D., Los Reyes, R. de, Dietrich, D., Heiden, U.,
Hölderlin, A., Ickes, J., Knodt, U., Krutz, D., Lester, H., Müller, R.,
Pagnutti, M., Reinartz, P., Richter, R., Ryan, R., Sebastian, I., &amp;
Tegler, M. (2019). Data Products, Quality and Validation of the DLR
Earth Sensing Imaging Spectrometer (DESIS). Sensors, 19(20).
https://doi.org/10.3390/s19204471</unstructured_citation>
</citation>
<citation key="Kampe2010">
<article_title>NEON: The First Continental-Scale Ecological
Observatory with Airborne Remote Sensing of Vegetation Canopy
Biochemistry and Structure</article_title>
<author>Kampe</author>
<journal_title>Journal of Applied Remote
Sensing</journal_title>
<issue>1</issue>
<volume>4</volume>
<doi>10.1117/1.3361375</doi>
<issn>1931-3195</issn>
<cYear>2010</cYear>
<unstructured_citation>Kampe, T. U., Johnson, B. R.,
Kuester, M. A., &amp; Keller, M. (2010). NEON: The First
Continental-Scale Ecological Observatory with Airborne Remote Sensing of
Vegetation Canopy Biochemistry and Structure. Journal of Applied Remote
Sensing, 4(1), 043510.
https://doi.org/10.1117/1.3361375</unstructured_citation>
</citation>
<citation key="Fisher2020">
<article_title>ECOSTRESS: NASA’s Next Generation Mission to
Measure Evapotranspiration from the International Space
Station</article_title>
<author>Fisher</author>
<journal_title>Water Resources Research</journal_title>
<issue>4</issue>
<volume>56</volume>
<doi>10.1029/2019wr026058</doi>
<issn>0043-1397</issn>
<cYear>2020</cYear>
<unstructured_citation>Fisher, J. B., Lee, B., Purdy, A. J.,
Halverson, G. H., Dohlen, M. B., Cawse-Nicholson, K., Wang, A.,
Anderson, R. G., Aragon, B., Arain, M. A., Baldocchi, D. D., Baker, J.
M., Barral, H., Bernacchi, C. J., Bernhofer, C., Biraud, S. C., Bohrer,
G., Brunsell, N., Cappelaere, B., … Hook, S. (2020). ECOSTRESS: NASA’s
Next Generation Mission to Measure Evapotranspiration from the
International Space Station. Water Resources Research, 56(4),
e2019WR026058.
https://doi.org/10.1029/2019wr026058</unstructured_citation>
</citation>
<citation key="barrett2024">
<article_title>earthaccess</article_title>
<author>Barrett</author>
<doi>10.5281/zenodo.10728098</doi>
<cYear>2024</cYear>
<unstructured_citation>Barrett, A., Battisto, C., Bourbeau,
J., Fisher, M., Kaufman, D., Kennedy, J., Lopez, L., Lowndes, J.,
Scheick, J., &amp; Steiker, A. (2024). earthaccess (Version v0.9.0).
Zenodo. https://doi.org/10.5281/zenodo.10728098</unstructured_citation>
</citation>
<citation key="Dierssen2021">
<article_title>Living Up to the Hype of Hyperspectral
Aquatic Remote Sensing: Science, Resources and Outlook</article_title>
<author>Dierssen</author>
<journal_title>Frontiers of Environmental Science &amp;
Engineering in China</journal_title>
<volume>9</volume>
<doi>10.3389/fenvs.2021.649528</doi>
<issn>1673-7415</issn>
<cYear>2021</cYear>
<unstructured_citation>Dierssen, H. M., Ackleson, S. G.,
Joyce, K. E., Hestir, E. L., Castagna, A., Lavender, S., &amp; McManus,
M. A. (2021). Living Up to the Hype of Hyperspectral Aquatic Remote
Sensing: Science, Resources and Outlook. Frontiers of Environmental
Science &amp; Engineering in China, 9.
https://doi.org/10.3389/fenvs.2021.649528</unstructured_citation>
</citation>
<citation key="Liu2019">
<article_title>Multi-Decadal Trends and Influences on
Dissolved Organic Carbon Distribution in the Barataria Basin, Louisiana
from In-Situ and Landsat/MODIS Observations</article_title>
<author>Liu</author>
<journal_title>Remote Sensing of Environment</journal_title>
<volume>228</volume>
<doi>10.1016/j.rse.2019.04.023</doi>
<issn>0034-4257</issn>
<cYear>2019</cYear>
<unstructured_citation>Liu, B., D’Sa, E. J., &amp; Joshi, I.
(2019). Multi-Decadal Trends and Influences on Dissolved Organic Carbon
Distribution in the Barataria Basin, Louisiana from In-Situ and
Landsat/MODIS Observations. Remote Sensing of Environment, 228, 183–202.
https://doi.org/10.1016/j.rse.2019.04.023</unstructured_citation>
</citation>
<citation key="Thompson2020">
<article_title>Quantifying Uncertainty for Remote
Spectroscopy of Surface Composition</article_title>
<author>Thompson</author>
<journal_title>Remote Sensing of Environment</journal_title>
<volume>247</volume>
<doi>10.1016/j.rse.2020.111898</doi>
<issn>0034-4257</issn>
<cYear>2020</cYear>
<unstructured_citation>Thompson, D. R., Braverman, A.,
Brodrick, P. G., Candela, A., Carmon, N., Clark, R. N., Connelly, D.,
Green, R. O., Kokaly, R. F., Li, L., Mahowald, N., Miller, R. L., Okin,
G. S., Painter, T. H., Swayze, G. A., Turmon, M., Susilouto, J., &amp;
Wettergreen, D. S. (2020). Quantifying Uncertainty for Remote
Spectroscopy of Surface Composition. Remote Sensing of Environment, 247,
111898.
https://doi.org/10.1016/j.rse.2020.111898</unstructured_citation>
</citation>
<citation key="Elliott2007">
<article_title>The Estuarine Quality Paradox, Environmental
Homeostasis and the Difficulty of Detecting Anthropogenic Stress in
Naturally Stressed Areas</article_title>
<author>Elliott</author>
<journal_title>Marine Pollution Bulletin</journal_title>
<issue>6</issue>
<volume>54</volume>
<doi>10.1016/j.marpolbul.2007.02.003</doi>
<issn>0025-326X</issn>
<cYear>2007</cYear>
<unstructured_citation>Elliott, M., &amp; Quintino, V.
(2007). The Estuarine Quality Paradox, Environmental Homeostasis and the
Difficulty of Detecting Anthropogenic Stress in Naturally Stressed
Areas. Marine Pollution Bulletin, 54(6), 640–645.
https://doi.org/10.1016/j.marpolbul.2007.02.003</unstructured_citation>
</citation>
<citation key="Junk2013">
<article_title>Current State of Knowledge Regarding the
World’s Wetlands and Their Future Under Global Climate Change: A
Synthesis</article_title>
<author>Junk</author>
<journal_title>Aquatic Sciences</journal_title>
<issue>1</issue>
<volume>75</volume>
<doi>10.1007/s00027-012-0278-z</doi>
<issn>1015-1621</issn>
<cYear>2013</cYear>
<unstructured_citation>Junk, W. J., An, S., Finlayson, C.
M., Gopal, B., Květ, J., Mitchell, S. A., Mitsch, W. J., &amp; Robarts,
R. D. (2013). Current State of Knowledge Regarding the World’s Wetlands
and Their Future Under Global Climate Change: A Synthesis. Aquatic
Sciences, 75(1), 151–167.
https://doi.org/10.1007/s00027-012-0278-z</unstructured_citation>
</citation>
<citation key="Pringle2001">
<article_title>Hydrologic Connectivity and the Management of
Biological Reserves: A Global Perspective</article_title>
<author>Pringle</author>
<journal_title>Ecological Applications: A Publication of the
Ecological Society of America</journal_title>
<issue>4</issue>
<volume>11</volume>
<doi>10.1890/1051-0761(2001)011[0981:HCATMO]2.0.CO;2</doi>
<issn>1051-0761</issn>
<cYear>2001</cYear>
<unstructured_citation>Pringle, C. M. (2001). Hydrologic
Connectivity and the Management of Biological Reserves: A Global
Perspective. Ecological Applications: A Publication of the Ecological
Society of America, 11(4), 981–998.
https://doi.org/10.1890/1051-0761(2001)011[0981:HCATMO]2.0.CO;2</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.07025/10.21105.joss.07025.pdf
Binary file not shown.
Loading

0 comments on commit ef70f00

Please sign in to comment.