Skip to content

Commit

Permalink
Merge pull request #5636 from openjournals/joss.06692
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jul 16, 2024
2 parents e26299e + 6f5b49b commit dea463f
Show file tree
Hide file tree
Showing 4 changed files with 1,086 additions and 0 deletions.
316 changes: 316 additions & 0 deletions joss.06692/10.21105.joss.06692.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,316 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240716213927-953416e8ef1c8d4dec03f013a8fadf19af2971b6</doi_batch_id>
<timestamp>20240716213927</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>07</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>99</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>scikit-eo: A Python package for Remote Sensing Data
Analysis</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Yonatan</given_name>
<surname>Tarazona</surname>
<ORCID>https://orcid.org/0000-0002-5208-1004</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Fernando</given_name>
<surname>Benitez-Paez</surname>
<ORCID>https://orcid.org/0000-0002-9884-6471</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Jakub</given_name>
<surname>Nowosad</surname>
<ORCID>https://orcid.org/0000-0002-1057-3721</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Fabian</given_name>
<surname>Drenkhan</surname>
<ORCID>https://orcid.org/0000-0002-9443-9596</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Martín E.</given_name>
<surname>Timaná</surname>
<ORCID>https://orcid.org/0000-0003-1559-4449</ORCID>
</person_name>
</contributors>
<publication_date>
<month>07</month>
<day>16</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6692</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06692</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.12688708</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6692</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06692</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06692</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06692.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Tarazona2021">
<article_title>Fusing Landsat and SAR data for mapping
tropical deforestation through machine learning classification and the
PVts-β non-seasonal detection approach</article_title>
<author>Tarazona</author>
<journal_title>Canadian Journal of Remote
Sensing</journal_title>
<volume>47</volume>
<doi>10.1080/07038992.2021.1941823</doi>
<cYear>2021</cYear>
<unstructured_citation>Tarazona, Y., Alaitz, Z., Xavier, P.,
Antoni, B., Jakub, N., &amp; Hamdi A., Z. (2021). Fusing Landsat and SAR
data for mapping tropical deforestation through machine learning
classification and the PVts-β non-seasonal detection approach. Canadian
Journal of Remote Sensing, 47, 677–696.
https://doi.org/10.1080/07038992.2021.1941823</unstructured_citation>
</citation>
<citation key="TARAZONA2020100337">
<article_title>Monitoring tropical forest degradation using
remote sensing. Challenges and opportunities in the Madre de Dios
region, Peru</article_title>
<author>Tarazona</author>
<journal_title>Remote Sensing Applications: Society and
Environment</journal_title>
<volume>19</volume>
<doi>10.1016/j.rsase.2020.100337</doi>
<issn>2352-9385</issn>
<cYear>2020</cYear>
<unstructured_citation>Tarazona, Y., &amp; Miyasiro-López,
M. (2020). Monitoring tropical forest degradation using remote sensing.
Challenges and opportunities in the Madre de Dios region, Peru. Remote
Sensing Applications: Society and Environment, 19, 100337.
https://doi.org/10.1016/j.rsase.2020.100337</unstructured_citation>
</citation>
<citation key="TARAZONA2018367">
<article_title>Improving tropical deforestation detection
through using photosynthetic vegetation time series –
(PVts-β)</article_title>
<author>Tarazona</author>
<journal_title>Ecological Indicators</journal_title>
<volume>94</volume>
<doi>10.1016/j.ecolind.2018.07.012</doi>
<issn>1470-160X</issn>
<cYear>2018</cYear>
<unstructured_citation>Tarazona, Y., Mantas, V. M., &amp;
Pereira, A. J. S. C. (2018). Improving tropical deforestation detection
through using photosynthetic vegetation time series – (PVts-β).
Ecological Indicators, 94, 367–379.
https://doi.org/10.1016/j.ecolind.2018.07.012</unstructured_citation>
</citation>
<citation key="OLOFSSON201442">
<article_title>Good practices for estimating area and
assessing accuracy of land change</article_title>
<author>Olofsson</author>
<journal_title>Remote Sensing of Environment</journal_title>
<volume>148</volume>
<doi>10.1016/j.rse.2014.02.015</doi>
<issn>0034-4257</issn>
<cYear>2014</cYear>
<unstructured_citation>Olofsson, P., Foody, G. M., Herold,
M., Stehman, S. V., Woodcock, C. E., &amp; Wulder, M. A. (2014). Good
practices for estimating area and assessing accuracy of land change.
Remote Sensing of Environment, 148, 42–57.
https://doi.org/10.1016/j.rse.2014.02.015</unstructured_citation>
</citation>
<citation key="POTT2021196">
<article_title>Satellite-based data fusion crop type
classification and mapping in Rio Grande do Sul, Brazil</article_title>
<author>Pott</author>
<journal_title>ISPRS Journal of Photogrammetry and Remote
Sensing</journal_title>
<volume>176</volume>
<doi>10.1016/j.isprsjprs.2021.04.015</doi>
<issn>0924-2716</issn>
<cYear>2021</cYear>
<unstructured_citation>Pott, L. P., Amado, T. J. C.,
Schwalbert, R. A., Corassa, G. M., &amp; Ciampitti, I. A. (2021).
Satellite-based data fusion crop type classification and mapping in Rio
Grande do Sul, Brazil. ISPRS Journal of Photogrammetry and Remote
Sensing, 176, 196–210.
https://doi.org/10.1016/j.isprsjprs.2021.04.015</unstructured_citation>
</citation>
<citation key="Chaves2020">
<article_title>Recent applications of Landsat 8/OLI and
Sentinel-2/MSI for land use and land cover mapping: A systematic
review</article_title>
<author>Chaves</author>
<journal_title>Remote Sensing</journal_title>
<issue>18</issue>
<volume>12</volume>
<doi>10.3390/rs12183062</doi>
<issn>2072-4292</issn>
<cYear>2020</cYear>
<unstructured_citation>Chaves, M. E. D., Picoli, M. C. A.,
&amp; Sanches, I. D. (2020). Recent applications of Landsat 8/OLI and
Sentinel-2/MSI for land use and land cover mapping: A systematic review.
Remote Sensing, 12(18).
https://doi.org/10.3390/rs12183062</unstructured_citation>
</citation>
<citation key="Trinder2020">
<article_title>Assessing environmental impacts of urban
growth using remote sensing</article_title>
<author>Trinder</author>
<journal_title>Geo-spatial Information
Science</journal_title>
<volume>23</volume>
<doi>10.1080/10095020.2019.1710438</doi>
<cYear>2020</cYear>
<unstructured_citation>Trinder, J., &amp; Liu, Q. (2020).
Assessing environmental impacts of urban growth using remote sensing.
Geo-Spatial Information Science, 23, 20–39.
https://doi.org/10.1080/10095020.2019.1710438</unstructured_citation>
</citation>
<citation key="Yang2013">
<article_title>The role of satellite remote sensing in
climate change studies</article_title>
<author>Yang</author>
<journal_title>Nature Climate Change</journal_title>
<volume>3</volume>
<doi>10.1038/nclimate1908</doi>
<issn>1758-6798</issn>
<cYear>2013</cYear>
<unstructured_citation>Yang, J., Gong, P., Fu, R., Zhang,
M., Chen, J., Liang, S., Xu, B., Shi, J., &amp; Dickinson, R. (2013).
The role of satellite remote sensing in climate change studies. Nature
Climate Change, 3, 875–883.
https://doi.org/10.1038/nclimate1908</unstructured_citation>
</citation>
<citation key="Jeannine2022">
<article_title>Integrating remote sensing with ecology and
evolution to advance biodiversity conservation</article_title>
<author>Cavender-Bares</author>
<journal_title>Nature Ecology &amp; Evolution 2022
6:5</journal_title>
<volume>6</volume>
<doi>10.1038/s41559-022-01702-5</doi>
<issn>2397-334X</issn>
<cYear>2022</cYear>
<unstructured_citation>Cavender-Bares, J., Schneider, F. D.,
Santos, M. J., Armstrong, A., Carnaval, A., Dahlin, K. M., Fatoyinbo,
L., Hurtt, G. C., Schimel, D., Townsend, P. A., Ustin, S. L., Wang, Z.,
&amp; Wilson, A. M. (2022). Integrating remote sensing with ecology and
evolution to advance biodiversity conservation. Nature Ecology &amp;
Evolution 2022 6:5, 6, 506–519.
https://doi.org/10.1038/s41559-022-01702-5</unstructured_citation>
</citation>
<citation key="Kucharczyk2021">
<article_title>Remote sensing of natural hazard-related
disasters with small drones: Global trends, biases, and research
opportunities</article_title>
<author>Kucharczyk</author>
<journal_title>Remote Sensing of Environment</journal_title>
<volume>264</volume>
<doi>10.1016/J.RSE.2021.112577</doi>
<issn>0034-4257</issn>
<cYear>2021</cYear>
<unstructured_citation>Kucharczyk, M., &amp; Hugenholtz, C.
H. (2021). Remote sensing of natural hazard-related disasters with small
drones: Global trends, biases, and research opportunities. Remote
Sensing of Environment, 264, 112577.
https://doi.org/10.1016/J.RSE.2021.112577</unstructured_citation>
</citation>
<citation key="Community2019">
<article_title>The Turing Way: A handbook for reproducible
data science</article_title>
<author>The Turing Way Community</author>
<doi>10.5281/ZENODO.3233986</doi>
<cYear>2019</cYear>
<unstructured_citation>The Turing Way Community, Arnold, B.,
Bowler, L., Gibson, S., Herterich, P., Higman, R., Krystalli, A.,
Morley, A., O’Reilly, M., &amp; Whitaker, K. (2019). The Turing Way: A
handbook for reproducible data science.
https://doi.org/10.5281/ZENODO.3233986</unstructured_citation>
</citation>
<citation key="Huss2018">
<article_title>Global-scale hydrological response to future
glacier mass loss</article_title>
<author>Huss</author>
<journal_title>Nature Climate Change</journal_title>
<volume>8</volume>
<doi>10.1038/s41558-017-0049-x</doi>
<cYear>2018</cYear>
<unstructured_citation>Huss, M., &amp; Hock, R. (2018).
Global-scale hydrological response to future glacier mass loss. Nature
Climate Change, 8, 135–140.
https://doi.org/10.1038/s41558-017-0049-x</unstructured_citation>
</citation>
<citation key="Hugonnet2021">
<article_title>Accelerated global glacier mass loss in the
early twenty-first century</article_title>
<author>Hugonnet</author>
<journal_title>Nature</journal_title>
<volume>592</volume>
<doi>10.1038/s41586-021-03436-z</doi>
<cYear>2018</cYear>
<unstructured_citation>Hugonnet, R., McNabb, R., Berthier,
E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M.,
Dussaillant, I., Brun, F., &amp; Kääb, A. (2018). Accelerated global
glacier mass loss in the early twenty-first century. Nature, 592,
726–731.
https://doi.org/10.1038/s41586-021-03436-z</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06692/10.21105.joss.06692.pdf
Binary file not shown.
Loading

0 comments on commit dea463f

Please sign in to comment.