-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Creating 10.21105.joss.05755.crossref.xml
- Loading branch information
1 parent
d656a72
commit dc0b41a
Showing
1 changed file
with
339 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,339 @@ | ||
<?xml version="1.0" encoding="UTF-8"?> | ||
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1" | ||
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" | ||
xmlns:rel="http://www.crossref.org/relations.xsd" | ||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" | ||
version="5.3.1" | ||
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd"> | ||
<head> | ||
<doi_batch_id>20231116T170444-68d5f67ef7febb92d7b6b965d3d76e36b965d0c5</doi_batch_id> | ||
<timestamp>20231116170444</timestamp> | ||
<depositor> | ||
<depositor_name>JOSS Admin</depositor_name> | ||
<email_address>[email protected]</email_address> | ||
</depositor> | ||
<registrant>The Open Journal</registrant> | ||
</head> | ||
<body> | ||
<journal> | ||
<journal_metadata> | ||
<full_title>Journal of Open Source Software</full_title> | ||
<abbrev_title>JOSS</abbrev_title> | ||
<issn media_type="electronic">2475-9066</issn> | ||
<doi_data> | ||
<doi>10.21105/joss</doi> | ||
<resource>https://joss.theoj.org</resource> | ||
</doi_data> | ||
</journal_metadata> | ||
<journal_issue> | ||
<publication_date media_type="online"> | ||
<month>11</month> | ||
<year>2023</year> | ||
</publication_date> | ||
<journal_volume> | ||
<volume>8</volume> | ||
</journal_volume> | ||
<issue>91</issue> | ||
</journal_issue> | ||
<journal_article publication_type="full_text"> | ||
<titles> | ||
<title>pvOps: a Python package for empirical analysis of | ||
photovoltaic field data</title> | ||
</titles> | ||
<contributors> | ||
<person_name sequence="first" contributor_role="author"> | ||
<given_name>Kirk L.</given_name> | ||
<surname>Bonney</surname> | ||
<ORCID>https://orcid.org/0009-0006-2383-1634</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Thushara</given_name> | ||
<surname>Gunda</surname> | ||
<ORCID>https://orcid.org/0000-0003-1945-4064</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Michael W.</given_name> | ||
<surname>Hopwood</surname> | ||
<ORCID>https://orcid.org/0000-0001-6190-1767</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Hector</given_name> | ||
<surname>Mendoza</surname> | ||
<ORCID>https://orcid.org/0009-0007-5812-606X</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Nicole D.</given_name> | ||
<surname>Jackson</surname> | ||
<ORCID>https://orcid.org/0000-0002-3814-9906</ORCID> | ||
</person_name> | ||
</contributors> | ||
<publication_date> | ||
<month>11</month> | ||
<day>16</day> | ||
<year>2023</year> | ||
</publication_date> | ||
<pages> | ||
<first_page>5755</first_page> | ||
</pages> | ||
<publisher_item> | ||
<identifier id_type="doi">10.21105/joss.05755</identifier> | ||
</publisher_item> | ||
<ai:program name="AccessIndicators"> | ||
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
</ai:program> | ||
<rel:program> | ||
<rel:related_item> | ||
<rel:description>Software archive</rel:description> | ||
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10126530</rel:inter_work_relation> | ||
</rel:related_item> | ||
<rel:related_item> | ||
<rel:description>GitHub review issue</rel:description> | ||
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5755</rel:inter_work_relation> | ||
</rel:related_item> | ||
</rel:program> | ||
<doi_data> | ||
<doi>10.21105/joss.05755</doi> | ||
<resource>https://joss.theoj.org/papers/10.21105/joss.05755</resource> | ||
<collection property="text-mining"> | ||
<item> | ||
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05755.pdf</resource> | ||
</item> | ||
</collection> | ||
</doi_data> | ||
<citation_list> | ||
<citation key="deceglie2018rdtools"> | ||
<article_title>RdTools: An open source python library for PV | ||
degradation analysis</article_title> | ||
<author>Deceglie</author> | ||
<cYear>2018</cYear> | ||
<unstructured_citation>Deceglie, M. G., Jordan, D., Nag, A., | ||
Deline, C. A., & Shinn, A. (2018). RdTools: An open source python | ||
library for PV degradation analysis. National Renewable Energy | ||
Lab.(NREL), Golden, CO (United States).</unstructured_citation> | ||
</citation> | ||
<citation key="gunda2020machine"> | ||
<article_title>A machine learning evaluation of maintenance | ||
records for common failure modes in PV inverters</article_title> | ||
<author>Gunda</author> | ||
<journal_title>IEEE Access</journal_title> | ||
<volume>8</volume> | ||
<doi>10.1109/ACCESS.2020.3039182</doi> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Gunda, T., Hackett, S., Kraus, L., | ||
Downs, C., Jones, R., McNalley, C., Bolen, M., & Walker, A. (2020). | ||
A machine learning evaluation of maintenance records for common failure | ||
modes in PV inverters. IEEE Access, 8, 211610–211620. | ||
https://doi.org/10.1109/ACCESS.2020.3039182</unstructured_citation> | ||
</citation> | ||
<citation key="holmgren2018pvlib"> | ||
<article_title>Pvlib python: A python package for modeling | ||
solar energy systems</article_title> | ||
<author>Holmgren</author> | ||
<journal_title>Journal of Open Source | ||
Software</journal_title> | ||
<issue>29</issue> | ||
<volume>3</volume> | ||
<doi>10.21105/joss.00884</doi> | ||
<cYear>2018</cYear> | ||
<unstructured_citation>Holmgren, W. F., Hansen, C. W., & | ||
Mikofski, M. A. (2018). Pvlib python: A python package for modeling | ||
solar energy systems. Journal of Open Source Software, 3(29), 884. | ||
https://doi.org/10.21105/joss.00884</unstructured_citation> | ||
</citation> | ||
<citation key="hopwood2020neural"> | ||
<article_title>Neural network-based classification of | ||
string-level IV curves from physically-induced failures of photovoltaic | ||
modules</article_title> | ||
<author>Hopwood</author> | ||
<journal_title>IEEE Access</journal_title> | ||
<volume>8</volume> | ||
<doi>10.1109/ACCESS.2020.3021577</doi> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Hopwood, M. W., Gunda, T., Seigneur, | ||
H., & Walters, J. (2020). Neural network-based classification of | ||
string-level IV curves from physically-induced failures of photovoltaic | ||
modules. IEEE Access, 8, 161480–161487. | ||
https://doi.org/10.1109/ACCESS.2020.3021577</unstructured_citation> | ||
</citation> | ||
<citation key="hopwood2022classification"> | ||
<article_title>Classification of photovoltaic failures with | ||
hidden markov modeling, an unsupervised statistical | ||
approach</article_title> | ||
<author>Hopwood</author> | ||
<journal_title>Energies</journal_title> | ||
<issue>14</issue> | ||
<volume>15</volume> | ||
<doi>10.3390/en15145104</doi> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Hopwood, M. W., Patel, L., & | ||
Gunda, T. (2022). Classification of photovoltaic failures with hidden | ||
markov modeling, an unsupervised statistical approach. Energies, 15(14), | ||
5104. https://doi.org/10.3390/en15145104</unstructured_citation> | ||
</citation> | ||
<citation key="hopwood2022generation"> | ||
<article_title>Generation of data-driven expected energy | ||
models for photovoltaic systems</article_title> | ||
<author>Hopwood</author> | ||
<journal_title>Applied Sciences</journal_title> | ||
<issue>4</issue> | ||
<volume>12</volume> | ||
<doi>10.3390/app12041872</doi> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Hopwood, M. W., & Gunda, T. | ||
(2022). Generation of data-driven expected energy models for | ||
photovoltaic systems. Applied Sciences, 12(4), 1872. | ||
https://doi.org/10.3390/app12041872</unstructured_citation> | ||
</citation> | ||
<citation key="hopwood2022physics"> | ||
<article_title>Physics-based method for generating fully | ||
synthetic IV curve training datasets for machine learning classification | ||
of PV failures</article_title> | ||
<author>Hopwood</author> | ||
<journal_title>Energies</journal_title> | ||
<issue>14</issue> | ||
<volume>15</volume> | ||
<doi>10.3390/en15145085</doi> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Hopwood, M. W., Stein, J. S., Braid, | ||
J. L., & Seigneur, H. P. (2022). Physics-based method for generating | ||
fully synthetic IV curve training datasets for machine learning | ||
classification of PV failures. Energies, 15(14), 5085. | ||
https://doi.org/10.3390/en15145085</unstructured_citation> | ||
</citation> | ||
<citation key="mendoza2021pvops"> | ||
<article_title>pvOps: Improving operational assessments | ||
through data fusion</article_title> | ||
<author>Mendoza</author> | ||
<journal_title>2021 IEEE 48th photovoltaic specialists | ||
conference (PVSC)</journal_title> | ||
<doi>10.1109/PVSC43889.2021.9518439</doi> | ||
<cYear>2021</cYear> | ||
<unstructured_citation>Mendoza, H., Hopwood, M., & | ||
Gunda, T. (2021). pvOps: Improving operational assessments through data | ||
fusion. 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), | ||
0112–0119. | ||
https://doi.org/10.1109/PVSC43889.2021.9518439</unstructured_citation> | ||
</citation> | ||
<citation key="reback2020pandas"> | ||
<article_title>Pandas-dev/pandas: pandas</article_title> | ||
<author>The pandas development team</author> | ||
<doi>10.5281/zenodo.3509134</doi> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>The pandas development team. (2020). | ||
Pandas-dev/pandas: pandas (latest). Zenodo. | ||
https://doi.org/10.5281/zenodo.3509134</unstructured_citation> | ||
</citation> | ||
<citation key="pierce2020identifying"> | ||
<article_title>Identifying degradation modes of photovoltaic | ||
modules using unsupervised machine learning on electroluminescense | ||
images</article_title> | ||
<author>Pierce</author> | ||
<journal_title>2020 47th IEEE photovoltaic specialists | ||
conference (PVSC)</journal_title> | ||
<doi>10.1109/PVSC45281.2020.9301021</doi> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Pierce, B. G., Karimi, A. M., Liu, | ||
J., French, R. H., & Braid, J. L. (2020). Identifying degradation | ||
modes of photovoltaic modules using unsupervised machine learning on | ||
electroluminescense images. 2020 47th IEEE Photovoltaic Specialists | ||
Conference (PVSC), 1850–1855. | ||
https://doi.org/10.1109/PVSC45281.2020.9301021</unstructured_citation> | ||
</citation> | ||
<citation key="klise2016performance"> | ||
<article_title>Performance monitoring using pecos (v. | ||
0.1)</article_title> | ||
<author>Klise</author> | ||
<doi>10.2172/1734479</doi> | ||
<cYear>2016</cYear> | ||
<unstructured_citation>Klise, K. A., & Stein, J. S. | ||
(2016). Performance monitoring using pecos (v. 0.1). Sandia National | ||
Laboraties. https://doi.org/10.2172/1734479</unstructured_citation> | ||
</citation> | ||
<citation key="plotly2015"> | ||
<article_title>Collaborative data science</article_title> | ||
<author>Plotly Technologies Inc.</author> | ||
<cYear>2015</cYear> | ||
<unstructured_citation>Plotly Technologies Inc. (2015). | ||
Collaborative data science. Plotly Technologies Inc. | ||
https://plot.ly</unstructured_citation> | ||
</citation> | ||
<citation key="waskom2021seaborn"> | ||
<article_title>Seaborn: Statistical data | ||
visualization</article_title> | ||
<author>Waskom</author> | ||
<journal_title>Journal of Open Source | ||
Software</journal_title> | ||
<issue>60</issue> | ||
<volume>6</volume> | ||
<doi>10.21105/joss.03021</doi> | ||
<cYear>2021</cYear> | ||
<unstructured_citation>Waskom, M. L. (2021). Seaborn: | ||
Statistical data visualization. Journal of Open Source Software, 6(60), | ||
3021. https://doi.org/10.21105/joss.03021</unstructured_citation> | ||
</citation> | ||
<citation key="hunter2007matplotlib"> | ||
<article_title>Matplotlib: A 2D graphics | ||
environment</article_title> | ||
<author>Hunter</author> | ||
<journal_title>Computing in Science & | ||
Engineering</journal_title> | ||
<issue>3</issue> | ||
<volume>9</volume> | ||
<doi>10.1109/MCSE.2007.55</doi> | ||
<cYear>2007</cYear> | ||
<unstructured_citation>Hunter, J. D. (2007). Matplotlib: A | ||
2D graphics environment. Computing in Science & Engineering, 9(3), | ||
90–95. https://doi.org/10.1109/MCSE.2007.55</unstructured_citation> | ||
</citation> | ||
<citation key="bird2009nltk"> | ||
<volume_title>Natural language processing with | ||
python</volume_title> | ||
<author>Bird</author> | ||
<cYear>2009</cYear> | ||
<unstructured_citation>Bird, S., Klein, E., & Loper, E. | ||
(2009). Natural language processing with python. O’Reilly | ||
Media.</unstructured_citation> | ||
</citation> | ||
<citation key="chollet2015keras"> | ||
<article_title>Keras</article_title> | ||
<author>Chollet</author> | ||
<cYear>2015</cYear> | ||
<unstructured_citation>Chollet, F., & others. (2015). | ||
Keras. https://keras.io.</unstructured_citation> | ||
</citation> | ||
<citation key="pedregosa2011sklearn"> | ||
<article_title>Scikit-learn: Machine learning in | ||
Python</article_title> | ||
<author>Pedregosa</author> | ||
<journal_title>Journal of Machine Learning | ||
Research</journal_title> | ||
<volume>12</volume> | ||
<cYear>2011</cYear> | ||
<unstructured_citation>Pedregosa, F., Varoquaux, G., | ||
Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., | ||
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., | ||
Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). | ||
Scikit-learn: Machine learning in Python. Journal of Machine Learning | ||
Research, 12, 2825–2830.</unstructured_citation> | ||
</citation> | ||
<citation key="perry2022pvanalytics"> | ||
<article_title>PVAnalytics: A python package for automated | ||
processing of solar time series data</article_title> | ||
<author>Perry</author> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Perry, K., Vining, W., Anderson, K., | ||
Muller, M., & Hansen, C. (2022). PVAnalytics: A python package for | ||
automated processing of solar time series data. National Renewable | ||
Energy Lab.(NREL), Golden, CO (United States).</unstructured_citation> | ||
</citation> | ||
</citation_list> | ||
</journal_article> | ||
</journal> | ||
</body> | ||
</doi_batch> |