Skip to content

Commit

Permalink
Merge pull request #5601 from openjournals/joss.06745
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jul 10, 2024
2 parents 0e21383 + 503ba97 commit d6ffbc9
Show file tree
Hide file tree
Showing 4 changed files with 1,158 additions and 0 deletions.
389 changes: 389 additions & 0 deletions joss.06745/10.21105.joss.06745.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,389 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240710201747-12b2f63e84d8099267885405e686af8cee2a803e</doi_batch_id>
<timestamp>20240710201747</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>07</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>99</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>nimbleHMC: An R package for Hamiltonian Monte Carlo
sampling in nimble</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Daniel</given_name>
<surname>Turek</surname>
<ORCID>https://orcid.org/0000-0002-1453-1908</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Perry</given_name>
<surname>de Valpine</surname>
<ORCID>https://orcid.org/0000-0002-8329-6796</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Christopher J.</given_name>
<surname>Paciorek</surname>
</person_name>
</contributors>
<publication_date>
<month>07</month>
<day>10</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6745</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06745</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.12658544</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6745</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06745</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06745</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06745.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="neal2011mcmc">
<article_title>Handbook of markov chain monte
carlo</article_title>
<author>Neal</author>
<cYear>2011</cYear>
<unstructured_citation>Neal, R. M. (2011). Handbook of
markov chain monte carlo (pp. 113–162). Chapman;
Hall/CRC.</unstructured_citation>
</citation>
<citation key="de2022comparemcmcs">
<article_title>compareMCMCs: An R package for studying MCMC
efficiency</article_title>
<author>de Valpine</author>
<journal_title>Journal of Open Source
Software</journal_title>
<issue>69</issue>
<volume>7</volume>
<doi>10.21105/joss.03844</doi>
<cYear>2022</cYear>
<unstructured_citation>de Valpine, P., Paganin, S., &amp;
Turek, D. (2022). compareMCMCs: An R package for studying MCMC
efficiency. Journal of Open Source Software, 7(69), 3844.
https://doi.org/10.21105/joss.03844</unstructured_citation>
</citation>
<citation key="de2017programming">
<article_title>Programming with models: Writing statistical
algorithms for general model structures with NIMBLE</article_title>
<author>de Valpine</author>
<journal_title>Journal of Computational and Graphical
Statistics</journal_title>
<issue>2</issue>
<volume>26</volume>
<doi>10.1080/10618600.2016.1172487</doi>
<cYear>2017</cYear>
<unstructured_citation>de Valpine, P., Turek, D., Paciorek,
C. J., Anderson-Bergman, C., Lang, D. T., &amp; Bodik, R. (2017).
Programming with models: Writing statistical algorithms for general
model structures with NIMBLE. Journal of Computational and Graphical
Statistics, 26(2), 403–413.
https://doi.org/10.1080/10618600.2016.1172487</unstructured_citation>
</citation>
<citation key="plummer2003jags">
<article_title>JAGS: A program for analysis of bayesian
graphical models using gibbs sampling</article_title>
<author>Plummer</author>
<journal_title>Proceedings of the 3rd international workshop
on distributed statistical computing</journal_title>
<volume>124</volume>
<cYear>2003</cYear>
<unstructured_citation>Plummer, M. (2003). JAGS: A program
for analysis of bayesian graphical models using gibbs sampling.
Proceedings of the 3rd International Workshop on Distributed Statistical
Computing, 124, 1–10.</unstructured_citation>
</citation>
<citation key="fonnesbeck2015pymc">
<article_title>PyMC: Bayesian stochastic modelling in
python</article_title>
<author>Fonnesbeck</author>
<journal_title>Astrophysics Source Code
Library</journal_title>
<cYear>2015</cYear>
<unstructured_citation>Fonnesbeck, C., Patil, A., Huard, D.,
&amp; Salvatier, J. (2015). PyMC: Bayesian stochastic modelling in
python. Astrophysics Source Code Library,
ascl–1506.</unstructured_citation>
</citation>
<citation key="carpenter2017stan">
<article_title>Stan: A probabilistic programming
language</article_title>
<author>Carpenter</author>
<journal_title>Journal of statistical
software</journal_title>
<issue>1</issue>
<volume>76</volume>
<doi>10.18637/jss.v076.i01</doi>
<cYear>2017</cYear>
<unstructured_citation>Carpenter, B., Gelman, A., Hoffman,
M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li,
P., &amp; Riddell, A. (2017). Stan: A probabilistic programming
language. Journal of Statistical Software, 76(1).
https://doi.org/10.18637/jss.v076.i01</unstructured_citation>
</citation>
<citation key="stan2023stan">
<article_title>Stan modeling language users guide and
reference manual, version 2.32.2</article_title>
<author>Stan Development Team</author>
<cYear>2023</cYear>
<unstructured_citation>Stan Development Team. (2023). Stan
modeling language users guide and reference manual, version 2.32.2.
https://mc-stan.org</unstructured_citation>
</citation>
<citation key="robert1999metropolis">
<article_title>The metropolis—hastings
algorithm</article_title>
<author>Robert</author>
<journal_title>Monte carlo statistical
methods</journal_title>
<cYear>1999</cYear>
<unstructured_citation>Robert, C. P., &amp; Casella, G.
(1999). The metropolis—hastings algorithm. In Monte carlo statistical
methods (pp. 231–283). Springer.</unstructured_citation>
</citation>
<citation key="neal2003slice">
<article_title>Slice sampling</article_title>
<author>Neal</author>
<journal_title>The annals of statistics</journal_title>
<issue>3</issue>
<volume>31</volume>
<doi>10.1214/aos/1056562461</doi>
<cYear>2003</cYear>
<unstructured_citation>Neal, R. M. (2003). Slice sampling.
The Annals of Statistics, 31(3), 705–767.
https://doi.org/10.1214/aos/1056562461</unstructured_citation>
</citation>
<citation key="george1993conjugate">
<article_title>Conjugate likelihood
distributions</article_title>
<author>George</author>
<journal_title>Scandinavian Journal of
Statistics</journal_title>
<cYear>1993</cYear>
<unstructured_citation>George, E. I., Makov, U., &amp;
Smith, A. (1993). Conjugate likelihood distributions. Scandinavian
Journal of Statistics, 147–156.</unstructured_citation>
</citation>
<citation key="hoffman2014no">
<article_title>The no-u-turn sampler: Adaptively setting
path lengths in hamiltonian monte carlo.</article_title>
<author>Hoffman</author>
<journal_title>J. Mach. Learn. Res.</journal_title>
<issue>1</issue>
<volume>15</volume>
<cYear>2014</cYear>
<unstructured_citation>Hoffman, M. D., &amp; Gelman, A.
(2014). The no-u-turn sampler: Adaptively setting path lengths in
hamiltonian monte carlo. J. Mach. Learn. Res., 15(1),
1593–1623.</unstructured_citation>
</citation>
<citation key="bartolucci2022discrete">
<article_title>Discrete latent variable
models</article_title>
<author>Bartolucci</author>
<journal_title>Annual Review of Statistics and Its
Application</journal_title>
<volume>9</volume>
<doi>10.1146/annurev-statistics-040220-091910</doi>
<cYear>2022</cYear>
<unstructured_citation>Bartolucci, F., Pandolfi, S., &amp;
Pennoni, F. (2022). Discrete latent variable models. Annual Review of
Statistics and Its Application, 9, 425–452.
https://doi.org/10.1146/annurev-statistics-040220-091910</unstructured_citation>
</citation>
<citation key="turek2017automated">
<article_title>Automated parameter blocking for efficient
markov chain monte carlo sampling</article_title>
<author>Turek</author>
<journal_title>Bayesian Analysis</journal_title>
<issue>2</issue>
<volume>12</volume>
<doi>10.1214/16-BA1008</doi>
<cYear>2017</cYear>
<unstructured_citation>Turek, D., de Valpine, P., Paciorek,
C. J., &amp; Anderson-Bergman, C. (2017). Automated parameter blocking
for efficient markov chain monte carlo sampling. Bayesian Analysis,
12(2), 465–490.
https://doi.org/10.1214/16-BA1008</unstructured_citation>
</citation>
<citation key="ponisio2020one">
<article_title>One size does not fit all: Customizing MCMC
methods for hierarchical models using NIMBLE</article_title>
<author>Ponisio</author>
<journal_title>Ecology and evolution</journal_title>
<issue>5</issue>
<volume>10</volume>
<doi>10.1002/ece3.6053</doi>
<cYear>2020</cYear>
<unstructured_citation>Ponisio, L. C., de Valpine, P.,
Michaud, N., &amp; Turek, D. (2020). One size does not fit all:
Customizing MCMC methods for hierarchical models using NIMBLE. Ecology
and Evolution, 10(5), 2385–2416.
https://doi.org/10.1002/ece3.6053</unstructured_citation>
</citation>
<citation key="murray2010elliptical">
<article_title>Elliptical slice sampling</article_title>
<author>Murray</author>
<journal_title>Proceedings of the thirteenth international
conference on artificial intelligence and statistics</journal_title>
<cYear>2010</cYear>
<unstructured_citation>Murray, I., Adams, R., &amp; MacKay,
D. (2010). Elliptical slice sampling. Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics,
541–548.</unstructured_citation>
</citation>
<citation key="tibbits2014automated">
<article_title>Automated factor slice
sampling</article_title>
<author>Tibbits</author>
<journal_title>Journal of Computational and Graphical
Statistics</journal_title>
<issue>2</issue>
<volume>23</volume>
<doi>10.1080/10618600.2013.791193</doi>
<cYear>2014</cYear>
<unstructured_citation>Tibbits, M. M., Groendyke, C., Haran,
M., &amp; Liechty, J. C. (2014). Automated factor slice sampling.
Journal of Computational and Graphical Statistics, 23(2), 543–563.
https://doi.org/10.1080/10618600.2013.791193</unstructured_citation>
</citation>
<citation key="mcdonald2018mra">
<volume_title>Mra: Mark-recapture analysis</volume_title>
<author>McDonald</author>
<cYear>2018</cYear>
<unstructured_citation>McDonald, T. (2018). Mra:
Mark-recapture analysis.
https://CRAN.R-project.org/package=mra</unstructured_citation>
</citation>
<citation key="lebreton1992modeling">
<article_title>Modeling survival and testing biological
hypotheses using marked animals: A unified approach with case
studies</article_title>
<author>Lebreton</author>
<journal_title>Ecological monographs</journal_title>
<issue>1</issue>
<volume>62</volume>
<doi>10.2307/2937171</doi>
<cYear>1992</cYear>
<unstructured_citation>Lebreton, J.-D., Burnham, K. P.,
Clobert, J., &amp; Anderson, D. R. (1992). Modeling survival and testing
biological hypotheses using marked animals: A unified approach with case
studies. Ecological Monographs, 62(1), 67–118.
https://doi.org/10.2307/2937171</unstructured_citation>
</citation>
<citation key="turek2016efficient">
<article_title>Efficient markov chain monte carlo sampling
for hierarchical hidden markov models</article_title>
<author>Turek</author>
<journal_title>Environmental and ecological
statistics</journal_title>
<volume>23</volume>
<doi>10.1007/s10651-016-0353-z</doi>
<cYear>2016</cYear>
<unstructured_citation>Turek, D., de Valpine, P., &amp;
Paciorek, C. J. (2016). Efficient markov chain monte carlo sampling for
hierarchical hidden markov models. Environmental and Ecological
Statistics, 23, 549–564.
https://doi.org/10.1007/s10651-016-0353-z</unstructured_citation>
</citation>
<citation key="lunn2000winbugs">
<article_title>WinBUGS-a bayesian modelling framework:
Concepts, structure, and extensibility</article_title>
<author>Lunn</author>
<journal_title>Statistics and computing</journal_title>
<volume>10</volume>
<doi>10.1023/A:1008929526011</doi>
<cYear>2000</cYear>
<unstructured_citation>Lunn, D. J., Thomas, A., Best, N.,
&amp; Spiegelhalter, D. (2000). WinBUGS-a bayesian modelling framework:
Concepts, structure, and extensibility. Statistics and Computing, 10,
325–337. https://doi.org/10.1023/A:1008929526011</unstructured_citation>
</citation>
<citation key="phan2019composable">
<article_title>Composable effects for flexible and
accelerated probabilistic programming in NumPyro</article_title>
<author>Phan</author>
<journal_title>arXiv preprint
arXiv:1912.11554</journal_title>
<doi>10.48550/arXiv.1912.11554</doi>
<cYear>2019</cYear>
<unstructured_citation>Phan, D., Pradhan, N., &amp;
Jankowiak, M. (2019). Composable effects for flexible and accelerated
probabilistic programming in NumPyro. arXiv Preprint arXiv:1912.11554.
https://doi.org/10.48550/arXiv.1912.11554</unstructured_citation>
</citation>
<citation key="pang2020deep">
<article_title>Deep learning with tensorflow: A
review</article_title>
<author>Pang</author>
<journal_title>Journal of Educational and Behavioral
Statistics</journal_title>
<issue>2</issue>
<volume>45</volume>
<doi>10.3102/1076998619872761</doi>
<cYear>2020</cYear>
<unstructured_citation>Pang, B., Nijkamp, E., &amp; Wu, Y.
N. (2020). Deep learning with tensorflow: A review. Journal of
Educational and Behavioral Statistics, 45(2), 227–248.
https://doi.org/10.3102/1076998619872761</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06745/10.21105.joss.06745.pdf
Binary file not shown.
Loading

0 comments on commit d6ffbc9

Please sign in to comment.