Skip to content

Commit

Permalink
Merge pull request #6281 from openjournals/joss.07008
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Dec 21, 2024
2 parents e521926 + 99bf1b2 commit cb0d0cc
Show file tree
Hide file tree
Showing 3 changed files with 851 additions and 0 deletions.
254 changes: 254 additions & 0 deletions joss.07008/10.21105.joss.07008.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,254 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20241221144658-bf8ad331d473c92c5b4127b31227c8e0470d184f</doi_batch_id>
<timestamp>20241221144658</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>12</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>104</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>spatPomp: An R package for spatiotemporal partially observed Markov process models</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Kidus</given_name>
<surname>Asfaw</surname>
<affiliations>
<institution><institution_name>University of Michigan, Department of Statistics.</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0001-8625-3743</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Joonha</given_name>
<surname>Park</surname>
<affiliations>
<institution><institution_name>University of Kansas, Department of Mathematics.</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-4493-7730</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Aaron A.</given_name>
<surname>King</surname>
<affiliations>
<institution><institution_name>University of Michigan, Departments of Ecology &amp; Evolutionary Biology and Complex Systems.</institution_name></institution>
<institution><institution_name>Santa Fe Institute, Santa Fe, New Mexico.</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0001-6159-3207</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Edward L.</given_name>
<surname>Ionides</surname>
<affiliations>
<institution><institution_name>University of Michigan, Department of Statistics.</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-4190-0174</ORCID>
</person_name>
</contributors>
<publication_date>
<month>12</month>
<day>21</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>7008</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.07008</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.14058236</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/7008</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.07008</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.07008</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.07008.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="asfaw24">
<article_title>A tutorial on spatiotemporal partially observed Markov process models via the R package spatPomp</article_title>
<author>Asfaw</author>
<journal_title>arXiv:2101.01157v4</journal_title>
<doi>10.48550/arXiv.2101.01157</doi>
<cYear>2024</cYear>
<unstructured_citation>Asfaw, K., Park, J., King, A. A., &amp; Ionides, E. L. (2024). A tutorial on spatiotemporal partially observed Markov process models via the R package spatPomp. arXiv:2101.01157v4. https://doi.org/10.48550/arXiv.2101.01157</unstructured_citation>
</citation>
<citation key="chopin20">
<volume_title>An introduction to sequential Monte Carlo</volume_title>
<author>Chopin</author>
<doi>10.1007/978-3-030-47845-2</doi>
<cYear>2020</cYear>
<unstructured_citation>Chopin, N., &amp; Papaspiliopoulos, O. (2020). An introduction to sequential Monte Carlo. Springer. https://doi.org/10.1007/978-3-030-47845-2</unstructured_citation>
</citation>
<citation key="evensen22">
<volume_title>Data assimilation fundamentals: A unified formulation of the state and parameter estimation problem</volume_title>
<author>Evensen</author>
<doi>10.1007/978-3-030-96709-3</doi>
<cYear>2022</cYear>
<unstructured_citation>Evensen, G., Vossepoel, F. C., &amp; Van Leeuwen, P. J. (2022). Data assimilation fundamentals: A unified formulation of the state and parameter estimation problem. Springer Nature. https://doi.org/10.1007/978-3-030-96709-3</unstructured_citation>
</citation>
<citation key="fitzjohn20">
<article_title>Reproducible parallel inference and simulation of stochastic state space models using odin, dust, and mcstate</article_title>
<author>FitzJohn</author>
<journal_title>Wellcome Open Research</journal_title>
<volume>5</volume>
<doi>10.12688/wellcomeopenres.16466.2</doi>
<cYear>2020</cYear>
<unstructured_citation>FitzJohn, R. G., Knock, E. S., Whittles, L. K., Perez-Guzman, P. N., Bhatia, S., Guntoro, F., Watson, O. J., Whittaker, C., Ferguson, N. M., Cori, A., Baguelin, M., &amp; Lees, J. A. (2020). Reproducible parallel inference and simulation of stochastic state space models using odin, dust, and mcstate. Wellcome Open Research, 5. https://doi.org/10.12688/wellcomeopenres.16466.2</unstructured_citation>
</citation>
<citation key="ionides23">
<article_title>Bagged filters for partially observed interacting systems</article_title>
<author>Ionides</author>
<journal_title>Journal of the American Statistical Association</journal_title>
<volume>118</volume>
<doi>10.1080/01621459.2021.1974867</doi>
<cYear>2023</cYear>
<unstructured_citation>Ionides, E. L., Asfaw, K., Park, J., &amp; King, A. A. (2023). Bagged filters for partially observed interacting systems. Journal of the American Statistical Association, 118, 1078–1089. https://doi.org/10.1080/01621459.2021.1974867</unstructured_citation>
</citation>
<citation key="kalman60">
<article_title>A new approach to linear filtering and prediction problems</article_title>
<author>Kalman</author>
<journal_title>Journal of Basic Engineering</journal_title>
<volume>82</volume>
<doi>10.1115/1.3662552</doi>
<cYear>1960</cYear>
<unstructured_citation>Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82, 35–45. https://doi.org/10.1115/1.3662552</unstructured_citation>
</citation>
<citation key="king16">
<article_title>Statistical inference for partially observed Markov processes via the R package pomp</article_title>
<author>King</author>
<journal_title>Journal of Statistical Software</journal_title>
<volume>69</volume>
<doi>10.18637/jss.v069.i12</doi>
<cYear>2016</cYear>
<unstructured_citation>King, A. A., Nguyen, D., &amp; Ionides, E. L. (2016). Statistical inference for partially observed Markov processes via the R package pomp. Journal of Statistical Software, 69, 1–43. https://doi.org/10.18637/jss.v069.i12</unstructured_citation>
</citation>
<citation key="li18">
<article_title>Fitting mechanistic epidemic models to data: A comparison of simple Markov chain Monte Carlo approaches</article_title>
<author>Li</author>
<journal_title>Statistical Methods in Medical Research</journal_title>
<issue>7</issue>
<volume>27</volume>
<doi>10.1177/0962280217747054</doi>
<cYear>2018</cYear>
<unstructured_citation>Li, M., Dushoff, J., &amp; Bolker, B. M. (2018). Fitting mechanistic epidemic models to data: A comparison of simple Markov chain Monte Carlo approaches. Statistical Methods in Medical Research, 27(7), 1956–1967. https://doi.org/10.1177/0962280217747054</unstructured_citation>
</citation>
<citation key="li24">
<article_title>Inference on spatiotemporal dynamics for coupled biological populations</article_title>
<author>Li</author>
<journal_title>Journal of the Royal Society Interface</journal_title>
<issue>216</issue>
<volume>21</volume>
<doi>10.1098/rsif.2024.0217</doi>
<cYear>2024</cYear>
<unstructured_citation>Li, J., Ionides, E. L., King, A. A., Pascual, M., &amp; Ning, N. (2024). Inference on spatiotemporal dynamics for coupled biological populations. Journal of the Royal Society Interface, 21(216), 20240217. https://doi.org/10.1098/rsif.2024.0217</unstructured_citation>
</citation>
<citation key="michaud21">
<article_title>Sequential Monte Carlo methods in the nimble and nimbleSMC R packages</article_title>
<author>Michaud</author>
<journal_title>Journal of Statistical Software</journal_title>
<volume>100</volume>
<doi>10.18637/jss.v100.i03</doi>
<cYear>2021</cYear>
<unstructured_citation>Michaud, N., Valpine, P. de, Turek, D., Paciorek, C. J., &amp; Nguyen, D. (2021). Sequential Monte Carlo methods in the nimble and nimbleSMC R packages. Journal of Statistical Software, 100, 1–39. https://doi.org/10.18637/jss.v100.i03</unstructured_citation>
</citation>
<citation key="murray15">
<article_title>Bayesian state-space modelling on high-performance hardware using LibBi</article_title>
<author>Murray</author>
<journal_title>Journal of Statistical Software</journal_title>
<issue>10</issue>
<volume>67</volume>
<doi>10.18637/jss.v067.i10</doi>
<cYear>2015</cYear>
<unstructured_citation>Murray, L. M. (2015). Bayesian state-space modelling on high-performance hardware using LibBi. Journal of Statistical Software, 67(10), 1–36. https://doi.org/10.18637/jss.v067.i10</unstructured_citation>
</citation>
<citation key="ning23">
<article_title>Iterated block particle filter for high-dimensional parameter learning: Beating the curse of dimensionality</article_title>
<author>Ning</author>
<journal_title>Journal of Machine Learning Research</journal_title>
<volume>24</volume>
<doi>10.48550/arXiv.2110.10745</doi>
<cYear>2023</cYear>
<unstructured_citation>Ning, N., &amp; Ionides, E. L. (2023). Iterated block particle filter for high-dimensional parameter learning: Beating the curse of dimensionality. Journal of Machine Learning Research, 24, 1–76. https://doi.org/10.48550/arXiv.2110.10745</unstructured_citation>
</citation>
<citation key="park20">
<article_title>Inference on high-dimensional implicit dynamic models using a guided intermediate resampling filter</article_title>
<author>Park</author>
<journal_title>Statistics and Computing</journal_title>
<volume>30</volume>
<doi>10.1007/s11222-020-09957-3</doi>
<cYear>2020</cYear>
<unstructured_citation>Park, J., &amp; Ionides, E. L. (2020). Inference on high-dimensional implicit dynamic models using a guided intermediate resampling filter. Statistics and Computing, 30, 1497–1522. https://doi.org/10.1007/s11222-020-09957-3</unstructured_citation>
</citation>
<citation key="wheeler24">
<article_title>Informing policy via dynamic models: Cholera in Haiti</article_title>
<author>Wheeler</author>
<journal_title>PLOS Computational Biology</journal_title>
<volume>20</volume>
<doi>10.1371/journal.pcbi.1012032</doi>
<cYear>2024</cYear>
<unstructured_citation>Wheeler, J., Rosengart, A., Jiang, Z., Tan, K., Treutle, N., &amp; Ionides, journal. (2024). Informing policy via dynamic models: Cholera in Haiti. PLOS Computational Biology, 20, e1012032. https://doi.org/10.1371/journal.pcbi.1012032</unstructured_citation>
</citation>
<citation key="zhang22">
<article_title>Mechanisms for the circulation of influenza A (H3N2) in China: A spatiotemporal modelling study</article_title>
<author>Zhang</author>
<journal_title>PLOS Pathogens</journal_title>
<issue>12</issue>
<volume>18</volume>
<doi>10.1371/journal.ppat.1011046</doi>
<cYear>2022</cYear>
<unstructured_citation>Zhang, B., Huang, W., Pei, S., Zeng, J., Shen, W., Wang, D., Wang, G., Chen, T., Yang, L., Cheng, P., Wang, D., Shu, Y., &amp; Du, X. (2022). Mechanisms for the circulation of influenza A (H3N2) in China: A spatiotemporal modelling study. PLOS Pathogens, 18(12), e1011046. https://doi.org/10.1371/journal.ppat.1011046</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.07008/10.21105.joss.07008.pdf
Binary file not shown.
Loading

0 comments on commit cb0d0cc

Please sign in to comment.