-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #6281 from openjournals/joss.07008
Merging automatically
- Loading branch information
Showing
3 changed files
with
851 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,254 @@ | ||
<?xml version="1.0" encoding="UTF-8"?> | ||
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1" | ||
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" | ||
xmlns:rel="http://www.crossref.org/relations.xsd" | ||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" | ||
version="5.3.1" | ||
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd"> | ||
<head> | ||
<doi_batch_id>20241221144658-bf8ad331d473c92c5b4127b31227c8e0470d184f</doi_batch_id> | ||
<timestamp>20241221144658</timestamp> | ||
<depositor> | ||
<depositor_name>JOSS Admin</depositor_name> | ||
<email_address>[email protected]</email_address> | ||
</depositor> | ||
<registrant>The Open Journal</registrant> | ||
</head> | ||
<body> | ||
<journal> | ||
<journal_metadata> | ||
<full_title>Journal of Open Source Software</full_title> | ||
<abbrev_title>JOSS</abbrev_title> | ||
<issn media_type="electronic">2475-9066</issn> | ||
<doi_data> | ||
<doi>10.21105/joss</doi> | ||
<resource>https://joss.theoj.org</resource> | ||
</doi_data> | ||
</journal_metadata> | ||
<journal_issue> | ||
<publication_date media_type="online"> | ||
<month>12</month> | ||
<year>2024</year> | ||
</publication_date> | ||
<journal_volume> | ||
<volume>9</volume> | ||
</journal_volume> | ||
<issue>104</issue> | ||
</journal_issue> | ||
<journal_article publication_type="full_text"> | ||
<titles> | ||
<title>spatPomp: An R package for spatiotemporal partially observed Markov process models</title> | ||
</titles> | ||
<contributors> | ||
<person_name sequence="first" contributor_role="author"> | ||
<given_name>Kidus</given_name> | ||
<surname>Asfaw</surname> | ||
<affiliations> | ||
<institution><institution_name>University of Michigan, Department of Statistics.</institution_name></institution> | ||
</affiliations> | ||
<ORCID>https://orcid.org/0000-0001-8625-3743</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Joonha</given_name> | ||
<surname>Park</surname> | ||
<affiliations> | ||
<institution><institution_name>University of Kansas, Department of Mathematics.</institution_name></institution> | ||
</affiliations> | ||
<ORCID>https://orcid.org/0000-0002-4493-7730</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Aaron A.</given_name> | ||
<surname>King</surname> | ||
<affiliations> | ||
<institution><institution_name>University of Michigan, Departments of Ecology & Evolutionary Biology and Complex Systems.</institution_name></institution> | ||
<institution><institution_name>Santa Fe Institute, Santa Fe, New Mexico.</institution_name></institution> | ||
</affiliations> | ||
<ORCID>https://orcid.org/0000-0001-6159-3207</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Edward L.</given_name> | ||
<surname>Ionides</surname> | ||
<affiliations> | ||
<institution><institution_name>University of Michigan, Department of Statistics.</institution_name></institution> | ||
</affiliations> | ||
<ORCID>https://orcid.org/0000-0002-4190-0174</ORCID> | ||
</person_name> | ||
</contributors> | ||
<publication_date> | ||
<month>12</month> | ||
<day>21</day> | ||
<year>2024</year> | ||
</publication_date> | ||
<pages> | ||
<first_page>7008</first_page> | ||
</pages> | ||
<publisher_item> | ||
<identifier id_type="doi">10.21105/joss.07008</identifier> | ||
</publisher_item> | ||
<ai:program name="AccessIndicators"> | ||
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
</ai:program> | ||
<rel:program> | ||
<rel:related_item> | ||
<rel:description>Software archive</rel:description> | ||
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.14058236</rel:inter_work_relation> | ||
</rel:related_item> | ||
<rel:related_item> | ||
<rel:description>GitHub review issue</rel:description> | ||
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/7008</rel:inter_work_relation> | ||
</rel:related_item> | ||
</rel:program> | ||
<doi_data> | ||
<doi>10.21105/joss.07008</doi> | ||
<resource>https://joss.theoj.org/papers/10.21105/joss.07008</resource> | ||
<collection property="text-mining"> | ||
<item> | ||
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.07008.pdf</resource> | ||
</item> | ||
</collection> | ||
</doi_data> | ||
<citation_list> | ||
<citation key="asfaw24"> | ||
<article_title>A tutorial on spatiotemporal partially observed Markov process models via the R package spatPomp</article_title> | ||
<author>Asfaw</author> | ||
<journal_title>arXiv:2101.01157v4</journal_title> | ||
<doi>10.48550/arXiv.2101.01157</doi> | ||
<cYear>2024</cYear> | ||
<unstructured_citation>Asfaw, K., Park, J., King, A. A., & Ionides, E. L. (2024). A tutorial on spatiotemporal partially observed Markov process models via the R package spatPomp. arXiv:2101.01157v4. https://doi.org/10.48550/arXiv.2101.01157</unstructured_citation> | ||
</citation> | ||
<citation key="chopin20"> | ||
<volume_title>An introduction to sequential Monte Carlo</volume_title> | ||
<author>Chopin</author> | ||
<doi>10.1007/978-3-030-47845-2</doi> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Chopin, N., & Papaspiliopoulos, O. (2020). An introduction to sequential Monte Carlo. Springer. https://doi.org/10.1007/978-3-030-47845-2</unstructured_citation> | ||
</citation> | ||
<citation key="evensen22"> | ||
<volume_title>Data assimilation fundamentals: A unified formulation of the state and parameter estimation problem</volume_title> | ||
<author>Evensen</author> | ||
<doi>10.1007/978-3-030-96709-3</doi> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Evensen, G., Vossepoel, F. C., & Van Leeuwen, P. J. (2022). Data assimilation fundamentals: A unified formulation of the state and parameter estimation problem. Springer Nature. https://doi.org/10.1007/978-3-030-96709-3</unstructured_citation> | ||
</citation> | ||
<citation key="fitzjohn20"> | ||
<article_title>Reproducible parallel inference and simulation of stochastic state space models using odin, dust, and mcstate</article_title> | ||
<author>FitzJohn</author> | ||
<journal_title>Wellcome Open Research</journal_title> | ||
<volume>5</volume> | ||
<doi>10.12688/wellcomeopenres.16466.2</doi> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>FitzJohn, R. G., Knock, E. S., Whittles, L. K., Perez-Guzman, P. N., Bhatia, S., Guntoro, F., Watson, O. J., Whittaker, C., Ferguson, N. M., Cori, A., Baguelin, M., & Lees, J. A. (2020). Reproducible parallel inference and simulation of stochastic state space models using odin, dust, and mcstate. Wellcome Open Research, 5. https://doi.org/10.12688/wellcomeopenres.16466.2</unstructured_citation> | ||
</citation> | ||
<citation key="ionides23"> | ||
<article_title>Bagged filters for partially observed interacting systems</article_title> | ||
<author>Ionides</author> | ||
<journal_title>Journal of the American Statistical Association</journal_title> | ||
<volume>118</volume> | ||
<doi>10.1080/01621459.2021.1974867</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Ionides, E. L., Asfaw, K., Park, J., & King, A. A. (2023). Bagged filters for partially observed interacting systems. Journal of the American Statistical Association, 118, 1078–1089. https://doi.org/10.1080/01621459.2021.1974867</unstructured_citation> | ||
</citation> | ||
<citation key="kalman60"> | ||
<article_title>A new approach to linear filtering and prediction problems</article_title> | ||
<author>Kalman</author> | ||
<journal_title>Journal of Basic Engineering</journal_title> | ||
<volume>82</volume> | ||
<doi>10.1115/1.3662552</doi> | ||
<cYear>1960</cYear> | ||
<unstructured_citation>Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82, 35–45. https://doi.org/10.1115/1.3662552</unstructured_citation> | ||
</citation> | ||
<citation key="king16"> | ||
<article_title>Statistical inference for partially observed Markov processes via the R package pomp</article_title> | ||
<author>King</author> | ||
<journal_title>Journal of Statistical Software</journal_title> | ||
<volume>69</volume> | ||
<doi>10.18637/jss.v069.i12</doi> | ||
<cYear>2016</cYear> | ||
<unstructured_citation>King, A. A., Nguyen, D., & Ionides, E. L. (2016). Statistical inference for partially observed Markov processes via the R package pomp. Journal of Statistical Software, 69, 1–43. https://doi.org/10.18637/jss.v069.i12</unstructured_citation> | ||
</citation> | ||
<citation key="li18"> | ||
<article_title>Fitting mechanistic epidemic models to data: A comparison of simple Markov chain Monte Carlo approaches</article_title> | ||
<author>Li</author> | ||
<journal_title>Statistical Methods in Medical Research</journal_title> | ||
<issue>7</issue> | ||
<volume>27</volume> | ||
<doi>10.1177/0962280217747054</doi> | ||
<cYear>2018</cYear> | ||
<unstructured_citation>Li, M., Dushoff, J., & Bolker, B. M. (2018). Fitting mechanistic epidemic models to data: A comparison of simple Markov chain Monte Carlo approaches. Statistical Methods in Medical Research, 27(7), 1956–1967. https://doi.org/10.1177/0962280217747054</unstructured_citation> | ||
</citation> | ||
<citation key="li24"> | ||
<article_title>Inference on spatiotemporal dynamics for coupled biological populations</article_title> | ||
<author>Li</author> | ||
<journal_title>Journal of the Royal Society Interface</journal_title> | ||
<issue>216</issue> | ||
<volume>21</volume> | ||
<doi>10.1098/rsif.2024.0217</doi> | ||
<cYear>2024</cYear> | ||
<unstructured_citation>Li, J., Ionides, E. L., King, A. A., Pascual, M., & Ning, N. (2024). Inference on spatiotemporal dynamics for coupled biological populations. Journal of the Royal Society Interface, 21(216), 20240217. https://doi.org/10.1098/rsif.2024.0217</unstructured_citation> | ||
</citation> | ||
<citation key="michaud21"> | ||
<article_title>Sequential Monte Carlo methods in the nimble and nimbleSMC R packages</article_title> | ||
<author>Michaud</author> | ||
<journal_title>Journal of Statistical Software</journal_title> | ||
<volume>100</volume> | ||
<doi>10.18637/jss.v100.i03</doi> | ||
<cYear>2021</cYear> | ||
<unstructured_citation>Michaud, N., Valpine, P. de, Turek, D., Paciorek, C. J., & Nguyen, D. (2021). Sequential Monte Carlo methods in the nimble and nimbleSMC R packages. Journal of Statistical Software, 100, 1–39. https://doi.org/10.18637/jss.v100.i03</unstructured_citation> | ||
</citation> | ||
<citation key="murray15"> | ||
<article_title>Bayesian state-space modelling on high-performance hardware using LibBi</article_title> | ||
<author>Murray</author> | ||
<journal_title>Journal of Statistical Software</journal_title> | ||
<issue>10</issue> | ||
<volume>67</volume> | ||
<doi>10.18637/jss.v067.i10</doi> | ||
<cYear>2015</cYear> | ||
<unstructured_citation>Murray, L. M. (2015). Bayesian state-space modelling on high-performance hardware using LibBi. Journal of Statistical Software, 67(10), 1–36. https://doi.org/10.18637/jss.v067.i10</unstructured_citation> | ||
</citation> | ||
<citation key="ning23"> | ||
<article_title>Iterated block particle filter for high-dimensional parameter learning: Beating the curse of dimensionality</article_title> | ||
<author>Ning</author> | ||
<journal_title>Journal of Machine Learning Research</journal_title> | ||
<volume>24</volume> | ||
<doi>10.48550/arXiv.2110.10745</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Ning, N., & Ionides, E. L. (2023). Iterated block particle filter for high-dimensional parameter learning: Beating the curse of dimensionality. Journal of Machine Learning Research, 24, 1–76. https://doi.org/10.48550/arXiv.2110.10745</unstructured_citation> | ||
</citation> | ||
<citation key="park20"> | ||
<article_title>Inference on high-dimensional implicit dynamic models using a guided intermediate resampling filter</article_title> | ||
<author>Park</author> | ||
<journal_title>Statistics and Computing</journal_title> | ||
<volume>30</volume> | ||
<doi>10.1007/s11222-020-09957-3</doi> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Park, J., & Ionides, E. L. (2020). Inference on high-dimensional implicit dynamic models using a guided intermediate resampling filter. Statistics and Computing, 30, 1497–1522. https://doi.org/10.1007/s11222-020-09957-3</unstructured_citation> | ||
</citation> | ||
<citation key="wheeler24"> | ||
<article_title>Informing policy via dynamic models: Cholera in Haiti</article_title> | ||
<author>Wheeler</author> | ||
<journal_title>PLOS Computational Biology</journal_title> | ||
<volume>20</volume> | ||
<doi>10.1371/journal.pcbi.1012032</doi> | ||
<cYear>2024</cYear> | ||
<unstructured_citation>Wheeler, J., Rosengart, A., Jiang, Z., Tan, K., Treutle, N., & Ionides, journal. (2024). Informing policy via dynamic models: Cholera in Haiti. PLOS Computational Biology, 20, e1012032. https://doi.org/10.1371/journal.pcbi.1012032</unstructured_citation> | ||
</citation> | ||
<citation key="zhang22"> | ||
<article_title>Mechanisms for the circulation of influenza A (H3N2) in China: A spatiotemporal modelling study</article_title> | ||
<author>Zhang</author> | ||
<journal_title>PLOS Pathogens</journal_title> | ||
<issue>12</issue> | ||
<volume>18</volume> | ||
<doi>10.1371/journal.ppat.1011046</doi> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Zhang, B., Huang, W., Pei, S., Zeng, J., Shen, W., Wang, D., Wang, G., Chen, T., Yang, L., Cheng, P., Wang, D., Shu, Y., & Du, X. (2022). Mechanisms for the circulation of influenza A (H3N2) in China: A spatiotemporal modelling study. PLOS Pathogens, 18(12), e1011046. https://doi.org/10.1371/journal.ppat.1011046</unstructured_citation> | ||
</citation> | ||
</citation_list> | ||
</journal_article> | ||
</journal> | ||
</body> | ||
</doi_batch> |
Binary file not shown.
Oops, something went wrong.