-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #5294 from openjournals/joss.06338
Merging automatically
- Loading branch information
Showing
4 changed files
with
785 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,286 @@ | ||
<?xml version="1.0" encoding="UTF-8"?> | ||
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1" | ||
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" | ||
xmlns:rel="http://www.crossref.org/relations.xsd" | ||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" | ||
version="5.3.1" | ||
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd"> | ||
<head> | ||
<doi_batch_id>20240502T072653-3c66a98204fb10c4a7cd444ffd784f1af467b6ed</doi_batch_id> | ||
<timestamp>20240502072653</timestamp> | ||
<depositor> | ||
<depositor_name>JOSS Admin</depositor_name> | ||
<email_address>[email protected]</email_address> | ||
</depositor> | ||
<registrant>The Open Journal</registrant> | ||
</head> | ||
<body> | ||
<journal> | ||
<journal_metadata> | ||
<full_title>Journal of Open Source Software</full_title> | ||
<abbrev_title>JOSS</abbrev_title> | ||
<issn media_type="electronic">2475-9066</issn> | ||
<doi_data> | ||
<doi>10.21105/joss</doi> | ||
<resource>https://joss.theoj.org</resource> | ||
</doi_data> | ||
</journal_metadata> | ||
<journal_issue> | ||
<publication_date media_type="online"> | ||
<month>05</month> | ||
<year>2024</year> | ||
</publication_date> | ||
<journal_volume> | ||
<volume>9</volume> | ||
</journal_volume> | ||
<issue>97</issue> | ||
</journal_issue> | ||
<journal_article publication_type="full_text"> | ||
<titles> | ||
<title>GrainLearning: A Bayesian uncertainty quantification | ||
toolbox for discrete and continuum numerical models of granular | ||
materials</title> | ||
</titles> | ||
<contributors> | ||
<person_name sequence="first" contributor_role="author"> | ||
<given_name>Hongyang</given_name> | ||
<surname>Cheng</surname> | ||
<ORCID>https://orcid.org/0000-0001-7652-8600</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Luisa</given_name> | ||
<surname>Orozco</surname> | ||
<ORCID>https://orcid.org/0000-0002-9153-650X</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Retief</given_name> | ||
<surname>Lubbe</surname> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Aron</given_name> | ||
<surname>Jansen</surname> | ||
<ORCID>https://orcid.org/0000-0002-4764-9347</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Philipp</given_name> | ||
<surname>Hartmann</surname> | ||
<ORCID>https://orcid.org/0000-0002-2524-8024</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Klaus</given_name> | ||
<surname>Thoeni</surname> | ||
<ORCID>https://orcid.org/0000-0001-7351-7447</ORCID> | ||
</person_name> | ||
</contributors> | ||
<publication_date> | ||
<month>05</month> | ||
<day>02</day> | ||
<year>2024</year> | ||
</publication_date> | ||
<pages> | ||
<first_page>6338</first_page> | ||
</pages> | ||
<publisher_item> | ||
<identifier id_type="doi">10.21105/joss.06338</identifier> | ||
</publisher_item> | ||
<ai:program name="AccessIndicators"> | ||
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
</ai:program> | ||
<rel:program> | ||
<rel:related_item> | ||
<rel:description>Software archive</rel:description> | ||
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.11001174</rel:inter_work_relation> | ||
</rel:related_item> | ||
<rel:related_item> | ||
<rel:description>GitHub review issue</rel:description> | ||
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6338</rel:inter_work_relation> | ||
</rel:related_item> | ||
</rel:program> | ||
<doi_data> | ||
<doi>10.21105/joss.06338</doi> | ||
<resource>https://joss.theoj.org/papers/10.21105/joss.06338</resource> | ||
<collection property="text-mining"> | ||
<item> | ||
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06338.pdf</resource> | ||
</item> | ||
</collection> | ||
</doi_data> | ||
<citation_list> | ||
<citation key="Cheng2019"> | ||
<article_title>An iterative bayesian filtering framework for | ||
fast and automated calibration of DEM models</article_title> | ||
<author>Cheng</author> | ||
<journal_title>Computer Methods in Applied Mechanics and | ||
Engineering</journal_title> | ||
<volume>350</volume> | ||
<doi>10.1016/j.cma.2019.01.027</doi> | ||
<issn>0045-7825</issn> | ||
<cYear>2019</cYear> | ||
<unstructured_citation>Cheng, H., Shuku, T., Thoeni, K., | ||
Tempone, P., Luding, S., & Magnanimo, V. (2019). An iterative | ||
bayesian filtering framework for fast and automated calibration of DEM | ||
models. Computer Methods in Applied Mechanics and Engineering, 350, | ||
268–294. | ||
https://doi.org/10.1016/j.cma.2019.01.027</unstructured_citation> | ||
</citation> | ||
<citation key="Cheng2018a"> | ||
<article_title>Probabilistic calibration of discrete element | ||
simulations using the sequential quasi-monte carlo | ||
filter</article_title> | ||
<author>Cheng</author> | ||
<journal_title>Granular Matter</journal_title> | ||
<volume>20</volume> | ||
<doi>10.1007/s10035-017-0781-y</doi> | ||
<cYear>2018</cYear> | ||
<unstructured_citation>Cheng, H., Shuku, T., Thoeni, K., | ||
& Yamamoto, H. (2018). Probabilistic calibration of discrete element | ||
simulations using the sequential quasi-monte carlo filter. Granular | ||
Matter, 20. | ||
https://doi.org/10.1007/s10035-017-0781-y</unstructured_citation> | ||
</citation> | ||
<citation key="Hartmann2022"> | ||
<article_title>Performance study of iterative bayesian | ||
filtering to develop an efficient calibration framework for | ||
DEM</article_title> | ||
<author>Hartmann</author> | ||
<journal_title>Computers and Geotechnics</journal_title> | ||
<volume>141</volume> | ||
<doi>10.1016/j.compgeo.2021.104491</doi> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Hartmann, P., Cheng, H., & | ||
Thoeni, K. (2022). Performance study of iterative bayesian filtering to | ||
develop an efficient calibration framework for DEM. Computers and | ||
Geotechnics, 141. | ||
https://doi.org/10.1016/j.compgeo.2021.104491</unstructured_citation> | ||
</citation> | ||
<citation key="ALVAREZ2022117000"> | ||
<article_title>Visco-elastic sintering kinetics in virgin | ||
and aged polymer powders</article_title> | ||
<author>Alvarez</author> | ||
<journal_title>Powder Technology</journal_title> | ||
<volume>397</volume> | ||
<doi>10.1016/j.powtec.2021.11.044</doi> | ||
<issn>0032-5910</issn> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Alvarez, J. E., Snijder, H., Vaneker, | ||
T., Cheng, H., Thornton, A. R., Luding, S., & Weinhart, T. (2022). | ||
Visco-elastic sintering kinetics in virgin and aged polymer powders. | ||
Powder Technology, 397, 117000. | ||
https://doi.org/10.1016/j.powtec.2021.11.044</unstructured_citation> | ||
</citation> | ||
<citation key="essay91991"> | ||
<article_title>Machine learning in the calibration process | ||
of discrete particle model</article_title> | ||
<author>Nguyen</author> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Nguyen, Q. H. (2022). Machine | ||
learning in the calibration process of discrete particle model. | ||
http://essay.utwente.nl/91991/</unstructured_citation> | ||
</citation> | ||
<citation key="LI2024105957"> | ||
<article_title>Discrete element modelling of uplift of rigid | ||
pipes deeply buried in dense sand</article_title> | ||
<author>Li</author> | ||
<journal_title>Computers and Geotechnics</journal_title> | ||
<volume>166</volume> | ||
<doi>10.1016/j.compgeo.2023.105957</doi> | ||
<issn>0266-352X</issn> | ||
<cYear>2024</cYear> | ||
<unstructured_citation>Li, X., Kouretzis, G., & Thoeni, | ||
K. (2024). Discrete element modelling of uplift of rigid pipes deeply | ||
buried in dense sand. Computers and Geotechnics, 166, 105957. | ||
https://doi.org/10.1016/j.compgeo.2023.105957</unstructured_citation> | ||
</citation> | ||
<citation key="Thornton2023"> | ||
<article_title>Simulating industrial scenarios: With the | ||
open-source software MercuryDPM</article_title> | ||
<author>Thornton</author> | ||
<doi>10.23967/c.particles.2023.015</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Thornton, A., Nguyen, Q., Polman, H., | ||
Bisschop, J., Weinhart-Mejia, R., Vesal, M., Weinhart, T., Post, M., | ||
& Ostanin, I. (2023, January). Simulating industrial scenarios: With | ||
the open-source software MercuryDPM. | ||
https://doi.org/10.23967/c.particles.2023.015</unstructured_citation> | ||
</citation> | ||
<citation key="Cheng2023"> | ||
<article_title>GrainLearning</article_title> | ||
<author>Cheng</author> | ||
<doi>10.5281/zenodo.8352544</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Cheng, H., Orozco, L., Lubbe, R., | ||
Jansen, A., Hartmann, P., & Thoeni, K. (2023). GrainLearning | ||
(Version v2.0.2). Zenodo. | ||
https://doi.org/10.5281/zenodo.8352544</unstructured_citation> | ||
</citation> | ||
<citation key="Do2018"> | ||
<article_title>A calibration framework for discrete element | ||
model parameters using genetic algorithms</article_title> | ||
<author>Do</author> | ||
<journal_title>Advanced Powder Technology</journal_title> | ||
<volume>29</volume> | ||
<doi>10.1016/J.APT.2018.03.001</doi> | ||
<issn>0921-8831</issn> | ||
<cYear>2018</cYear> | ||
<unstructured_citation>Do, H. Q., Aragón, A. M., & | ||
Schott, D. L. (2018). A calibration framework for discrete element model | ||
parameters using genetic algorithms. Advanced Powder Technology, 29, | ||
1393–1403. | ||
https://doi.org/10.1016/J.APT.2018.03.001</unstructured_citation> | ||
</citation> | ||
<citation key="Hanley2011"> | ||
<article_title>Application of taguchi methods to DEM | ||
calibration of bonded agglomerates</article_title> | ||
<author>Hanley</author> | ||
<journal_title>Powder Technology</journal_title> | ||
<volume>210</volume> | ||
<doi>10.1016/j.powtec.2011.03.023</doi> | ||
<cYear>2011</cYear> | ||
<unstructured_citation>Hanley, K. J., O’Sullivan, C., | ||
Oliveira, J. C., Cronin, K., & Byrne, E. P. (2011). Application of | ||
taguchi methods to DEM calibration of bonded agglomerates. Powder | ||
Technology, 210, 230–240. | ||
https://doi.org/10.1016/j.powtec.2011.03.023</unstructured_citation> | ||
</citation> | ||
<citation key="Fransen2021"> | ||
<article_title>Application of DEM-based metamodels in bulk | ||
handling equipment design: Methodology and DEM case | ||
study</article_title> | ||
<author>Fransen</author> | ||
<journal_title>Powder Technology</journal_title> | ||
<volume>393</volume> | ||
<doi>10.1016/J.POWTEC.2021.07.048</doi> | ||
<issn>0032-5910</issn> | ||
<cYear>2021</cYear> | ||
<unstructured_citation>Fransen, M. P., Langelaar, M., & | ||
Schott, D. L. (2021). Application of DEM-based metamodels in bulk | ||
handling equipment design: Methodology and DEM case study. Powder | ||
Technology, 393, 205–218. | ||
https://doi.org/10.1016/J.POWTEC.2021.07.048</unstructured_citation> | ||
</citation> | ||
<citation key="Benvenuti2016"> | ||
<article_title>Identification of DEM simulation parameters | ||
by artificial neural networks and bulk experiments</article_title> | ||
<author>Benvenuti</author> | ||
<journal_title>Powder Technology</journal_title> | ||
<volume>291</volume> | ||
<doi>10.1016/j.powtec.2016.01.003</doi> | ||
<cYear>2016</cYear> | ||
<unstructured_citation>Benvenuti, L., Kloss, C., & | ||
Pirker, S. (2016). Identification of DEM simulation parameters by | ||
artificial neural networks and bulk experiments. Powder Technology, 291, | ||
456–465. | ||
https://doi.org/10.1016/j.powtec.2016.01.003</unstructured_citation> | ||
</citation> | ||
</citation_list> | ||
</journal_article> | ||
</journal> | ||
</body> | ||
</doi_batch> |
Oops, something went wrong.