Skip to content

Commit

Permalink
Merge pull request #5294 from openjournals/joss.06338
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored May 2, 2024
2 parents 2d8d549 + e3c6677 commit c29c5e4
Show file tree
Hide file tree
Showing 4 changed files with 785 additions and 0 deletions.
286 changes: 286 additions & 0 deletions joss.06338/10.21105.joss.06338.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,286 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240502T072653-3c66a98204fb10c4a7cd444ffd784f1af467b6ed</doi_batch_id>
<timestamp>20240502072653</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>05</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>97</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>GrainLearning: A Bayesian uncertainty quantification
toolbox for discrete and continuum numerical models of granular
materials</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Hongyang</given_name>
<surname>Cheng</surname>
<ORCID>https://orcid.org/0000-0001-7652-8600</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Luisa</given_name>
<surname>Orozco</surname>
<ORCID>https://orcid.org/0000-0002-9153-650X</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Retief</given_name>
<surname>Lubbe</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Aron</given_name>
<surname>Jansen</surname>
<ORCID>https://orcid.org/0000-0002-4764-9347</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Philipp</given_name>
<surname>Hartmann</surname>
<ORCID>https://orcid.org/0000-0002-2524-8024</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Klaus</given_name>
<surname>Thoeni</surname>
<ORCID>https://orcid.org/0000-0001-7351-7447</ORCID>
</person_name>
</contributors>
<publication_date>
<month>05</month>
<day>02</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6338</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06338</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.11001174</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6338</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06338</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06338</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06338.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Cheng2019">
<article_title>An iterative bayesian filtering framework for
fast and automated calibration of DEM models</article_title>
<author>Cheng</author>
<journal_title>Computer Methods in Applied Mechanics and
Engineering</journal_title>
<volume>350</volume>
<doi>10.1016/j.cma.2019.01.027</doi>
<issn>0045-7825</issn>
<cYear>2019</cYear>
<unstructured_citation>Cheng, H., Shuku, T., Thoeni, K.,
Tempone, P., Luding, S., &amp; Magnanimo, V. (2019). An iterative
bayesian filtering framework for fast and automated calibration of DEM
models. Computer Methods in Applied Mechanics and Engineering, 350,
268–294.
https://doi.org/10.1016/j.cma.2019.01.027</unstructured_citation>
</citation>
<citation key="Cheng2018a">
<article_title>Probabilistic calibration of discrete element
simulations using the sequential quasi-monte carlo
filter</article_title>
<author>Cheng</author>
<journal_title>Granular Matter</journal_title>
<volume>20</volume>
<doi>10.1007/s10035-017-0781-y</doi>
<cYear>2018</cYear>
<unstructured_citation>Cheng, H., Shuku, T., Thoeni, K.,
&amp; Yamamoto, H. (2018). Probabilistic calibration of discrete element
simulations using the sequential quasi-monte carlo filter. Granular
Matter, 20.
https://doi.org/10.1007/s10035-017-0781-y</unstructured_citation>
</citation>
<citation key="Hartmann2022">
<article_title>Performance study of iterative bayesian
filtering to develop an efficient calibration framework for
DEM</article_title>
<author>Hartmann</author>
<journal_title>Computers and Geotechnics</journal_title>
<volume>141</volume>
<doi>10.1016/j.compgeo.2021.104491</doi>
<cYear>2022</cYear>
<unstructured_citation>Hartmann, P., Cheng, H., &amp;
Thoeni, K. (2022). Performance study of iterative bayesian filtering to
develop an efficient calibration framework for DEM. Computers and
Geotechnics, 141.
https://doi.org/10.1016/j.compgeo.2021.104491</unstructured_citation>
</citation>
<citation key="ALVAREZ2022117000">
<article_title>Visco-elastic sintering kinetics in virgin
and aged polymer powders</article_title>
<author>Alvarez</author>
<journal_title>Powder Technology</journal_title>
<volume>397</volume>
<doi>10.1016/j.powtec.2021.11.044</doi>
<issn>0032-5910</issn>
<cYear>2022</cYear>
<unstructured_citation>Alvarez, J. E., Snijder, H., Vaneker,
T., Cheng, H., Thornton, A. R., Luding, S., &amp; Weinhart, T. (2022).
Visco-elastic sintering kinetics in virgin and aged polymer powders.
Powder Technology, 397, 117000.
https://doi.org/10.1016/j.powtec.2021.11.044</unstructured_citation>
</citation>
<citation key="essay91991">
<article_title>Machine learning in the calibration process
of discrete particle model</article_title>
<author>Nguyen</author>
<cYear>2022</cYear>
<unstructured_citation>Nguyen, Q. H. (2022). Machine
learning in the calibration process of discrete particle model.
http://essay.utwente.nl/91991/</unstructured_citation>
</citation>
<citation key="LI2024105957">
<article_title>Discrete element modelling of uplift of rigid
pipes deeply buried in dense sand</article_title>
<author>Li</author>
<journal_title>Computers and Geotechnics</journal_title>
<volume>166</volume>
<doi>10.1016/j.compgeo.2023.105957</doi>
<issn>0266-352X</issn>
<cYear>2024</cYear>
<unstructured_citation>Li, X., Kouretzis, G., &amp; Thoeni,
K. (2024). Discrete element modelling of uplift of rigid pipes deeply
buried in dense sand. Computers and Geotechnics, 166, 105957.
https://doi.org/10.1016/j.compgeo.2023.105957</unstructured_citation>
</citation>
<citation key="Thornton2023">
<article_title>Simulating industrial scenarios: With the
open-source software MercuryDPM</article_title>
<author>Thornton</author>
<doi>10.23967/c.particles.2023.015</doi>
<cYear>2023</cYear>
<unstructured_citation>Thornton, A., Nguyen, Q., Polman, H.,
Bisschop, J., Weinhart-Mejia, R., Vesal, M., Weinhart, T., Post, M.,
&amp; Ostanin, I. (2023, January). Simulating industrial scenarios: With
the open-source software MercuryDPM.
https://doi.org/10.23967/c.particles.2023.015</unstructured_citation>
</citation>
<citation key="Cheng2023">
<article_title>GrainLearning</article_title>
<author>Cheng</author>
<doi>10.5281/zenodo.8352544</doi>
<cYear>2023</cYear>
<unstructured_citation>Cheng, H., Orozco, L., Lubbe, R.,
Jansen, A., Hartmann, P., &amp; Thoeni, K. (2023). GrainLearning
(Version v2.0.2). Zenodo.
https://doi.org/10.5281/zenodo.8352544</unstructured_citation>
</citation>
<citation key="Do2018">
<article_title>A calibration framework for discrete element
model parameters using genetic algorithms</article_title>
<author>Do</author>
<journal_title>Advanced Powder Technology</journal_title>
<volume>29</volume>
<doi>10.1016/J.APT.2018.03.001</doi>
<issn>0921-8831</issn>
<cYear>2018</cYear>
<unstructured_citation>Do, H. Q., Aragón, A. M., &amp;
Schott, D. L. (2018). A calibration framework for discrete element model
parameters using genetic algorithms. Advanced Powder Technology, 29,
1393–1403.
https://doi.org/10.1016/J.APT.2018.03.001</unstructured_citation>
</citation>
<citation key="Hanley2011">
<article_title>Application of taguchi methods to DEM
calibration of bonded agglomerates</article_title>
<author>Hanley</author>
<journal_title>Powder Technology</journal_title>
<volume>210</volume>
<doi>10.1016/j.powtec.2011.03.023</doi>
<cYear>2011</cYear>
<unstructured_citation>Hanley, K. J., O’Sullivan, C.,
Oliveira, J. C., Cronin, K., &amp; Byrne, E. P. (2011). Application of
taguchi methods to DEM calibration of bonded agglomerates. Powder
Technology, 210, 230–240.
https://doi.org/10.1016/j.powtec.2011.03.023</unstructured_citation>
</citation>
<citation key="Fransen2021">
<article_title>Application of DEM-based metamodels in bulk
handling equipment design: Methodology and DEM case
study</article_title>
<author>Fransen</author>
<journal_title>Powder Technology</journal_title>
<volume>393</volume>
<doi>10.1016/J.POWTEC.2021.07.048</doi>
<issn>0032-5910</issn>
<cYear>2021</cYear>
<unstructured_citation>Fransen, M. P., Langelaar, M., &amp;
Schott, D. L. (2021). Application of DEM-based metamodels in bulk
handling equipment design: Methodology and DEM case study. Powder
Technology, 393, 205–218.
https://doi.org/10.1016/J.POWTEC.2021.07.048</unstructured_citation>
</citation>
<citation key="Benvenuti2016">
<article_title>Identification of DEM simulation parameters
by artificial neural networks and bulk experiments</article_title>
<author>Benvenuti</author>
<journal_title>Powder Technology</journal_title>
<volume>291</volume>
<doi>10.1016/j.powtec.2016.01.003</doi>
<cYear>2016</cYear>
<unstructured_citation>Benvenuti, L., Kloss, C., &amp;
Pirker, S. (2016). Identification of DEM simulation parameters by
artificial neural networks and bulk experiments. Powder Technology, 291,
456–465.
https://doi.org/10.1016/j.powtec.2016.01.003</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit c29c5e4

Please sign in to comment.