Skip to content

Commit

Permalink
Merge pull request #6227 from openjournals/joss.07206
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Dec 6, 2024
2 parents 4ecd51e + 9496eda commit c247a25
Show file tree
Hide file tree
Showing 5 changed files with 729 additions and 0 deletions.
190 changes: 190 additions & 0 deletions joss.07206/10.21105.joss.07206.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,190 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20241206141531-1f31515415d9f3885fb05036ee08448e55439275</doi_batch_id>
<timestamp>20241206141531</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>12</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>104</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>StreamGen: a Python framework for generating streams of labeled data</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Laurenz A.</given_name>
<surname>Farthofer</surname>
<affiliations>
<institution><institution_name>KAI - Kompetenzzentrum Automobil- und Industrieelektronik GmbH, Austria</institution_name></institution>
<institution><institution_name>Institute of Computer Graphics and Vision, Graz University of Technology, Austria</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0003-1477-1327</ORCID>
</person_name>
</contributors>
<publication_date>
<month>12</month>
<day>06</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>7206</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.07206</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.14273611</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/7206</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.07206</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.07206</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.07206.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="masana_class-incremental_2022">
<article_title>Class-Incremental Learning: Survey and Performance Evaluation on Image Classification</article_title>
<author>Masana</author>
<journal_title>IEEE Transactions on Pattern Analysis and Machine Intelligence</journal_title>
<issue>5</issue>
<volume>45</volume>
<doi>10.1109/TPAMI.2022.3213473</doi>
<issn>1939-3539</issn>
<cYear>2023</cYear>
<unstructured_citation>Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov, A. D., &amp; van de Weijer, J. (2023). Class-Incremental Learning: Survey and Performance Evaluation on Image Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5), 5513–5533. https://doi.org/10.1109/TPAMI.2022.3213473</unstructured_citation>
</citation>
<citation key="lu_learning_2018">
<article_title>Learning under Concept Drift: A Review</article_title>
<author>Lu</author>
<journal_title>IEEE Transactions on Knowledge and Data Engineering</journal_title>
<doi>10.1109/TKDE.2018.2876857</doi>
<issn>1041-4347</issn>
<cYear>2018</cYear>
<unstructured_citation>Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., &amp; Zhang, G. (2018). Learning under Concept Drift: A Review. IEEE Transactions on Knowledge and Data Engineering, 1–1. https://doi.org/10.1109/TKDE.2018.2876857</unstructured_citation>
</citation>
<citation key="hess_procedural_2021">
<article_title>A Procedural World Generation Framework for Systematic Evaluation of Continual Learning</article_title>
<author>Hess</author>
<cYear>2021</cYear>
<unstructured_citation>Hess, T., Mundt, M., Pliushch, I., &amp; Ramesh, V. (2021, June 8). A Procedural World Generation Framework for Systematic Evaluation of Continual Learning. Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1). https://openreview.net/forum?id=LlCQWh8-pwK</unstructured_citation>
</citation>
<citation key="cossu_is_2021">
<article_title>Is Class-Incremental Enough for Continual Learning?</article_title>
<author>Cossu</author>
<journal_title>Frontiers in Artificial Intelligence</journal_title>
<volume>5</volume>
<doi>10.3389/frai.2022.829842</doi>
<issn>2624-8212</issn>
<cYear>2022</cYear>
<unstructured_citation>Cossu, A., Graffieti, G., Pellegrini, L., Maltoni, D., Bacciu, D., Carta, A., &amp; Lomonaco, V. (2022). Is Class-Incremental Enough for Continual Learning? Frontiers in Artificial Intelligence, 5. https://doi.org/10.3389/frai.2022.829842</unstructured_citation>
</citation>
<citation key="wu_wafer_2015">
<article_title>Wafer Map Failure Pattern Recognition and Similarity Ranking for Large-Scale Data Sets</article_title>
<author>Wu</author>
<journal_title>IEEE Transactions on Semiconductor Manufacturing</journal_title>
<issue>1</issue>
<volume>28</volume>
<doi>10.1109/TSM.2014.2364237</doi>
<issn>1558-2345</issn>
<cYear>2015</cYear>
<unstructured_citation>Wu, M.-J., Jang, J.-S. R., &amp; Chen, J.-L. (2015). Wafer Map Failure Pattern Recognition and Similarity Ranking for Large-Scale Data Sets. IEEE Transactions on Semiconductor Manufacturing, 28(1), 1–12. https://doi.org/10.1109/TSM.2014.2364237</unstructured_citation>
</citation>
<citation key="van_de_ven_continual_2024">
<article_title>Continual Learning and Catastrophic Forgetting</article_title>
<author>Ven</author>
<doi>10.48550/arXiv.2403.05175</doi>
<cYear>2024</cYear>
<unstructured_citation>Ven, G. M. van de, Soures, N., &amp; Kudithipudi, D. (2024). Continual Learning and Catastrophic Forgetting. arXiv. https://doi.org/10.48550/arXiv.2403.05175</unstructured_citation>
</citation>
<citation key="lomonaco_avalanche_2021">
<article_title>Avalanche: An End-to-End Library for Continual Learning</article_title>
<author>Lomonaco</author>
<journal_title>2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</journal_title>
<doi>10.1109/CVPRW53098.2021.00399</doi>
<isbn>978-1-66544-899-4</isbn>
<cYear>2021</cYear>
<unstructured_citation>Lomonaco, V., Pellegrini, L., Cossu, A., Carta, A., Graffieti, G., Hayes, T. L., De Lange, M., Masana, M., Pomponi, J., Van De Ven, G. M., Mundt, M., She, Q., Cooper, K., Forest, J., Belouadah, E., Calderara, S., Parisi, G. I., Cuzzolin, F., Tolias, A. S., … Maltoni, D. (2021). Avalanche: An End-to-End Library for Continual Learning. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 3595–3605. https://doi.org/10.1109/CVPRW53098.2021.00399</unstructured_citation>
</citation>
<citation key="douillard_continuum_2021">
<article_title>Continuum: Simple Management of Complex Continual Learning Scenarios</article_title>
<author>Douillard</author>
<doi>10.48550/arXiv.2102.06253</doi>
<cYear>2021</cYear>
<unstructured_citation>Douillard, A., &amp; Lesort, T. (2021). Continuum: Simple Management of Complex Continual Learning Scenarios. arXiv. https://doi.org/10.48550/arXiv.2102.06253</unstructured_citation>
</citation>
<citation key="hendrycks_benchmarking_2019">
<article_title>Benchmarking Neural Network Robustness to Common Corruptions and Perturbations</article_title>
<author>Hendrycks</author>
<cYear>2018</cYear>
<unstructured_citation>Hendrycks, D., &amp; Dietterich, T. (2018). Benchmarking Neural Network Robustness to Common Corruptions and Perturbations. International Conference on Learning Representations. https://openreview.net/forum?id=HJz6tiCqYm</unstructured_citation>
</citation>
<citation key="torchvision2016">
<article_title>TorchVision: PyTorch’s Computer Vision library</article_title>
<author>TorchVision maintainers and contributors</author>
<cYear>2016</cYear>
<unstructured_citation>TorchVision maintainers and contributors. (2016). TorchVision: PyTorch’s Computer Vision library (Version 0.20.1). https://github.com/pytorch/vision</unstructured_citation>
</citation>
<citation key="c0fec0de_anytree_2016">
<article_title>Anytree: Python tree data library</article_title>
<author>c0fec0de</author>
<cYear>2016</cYear>
<unstructured_citation>c0fec0de. (2016). Anytree: Python tree data library (Version 2.12.1). GitHub. https://github.com/c0fec0de/anytree</unstructured_citation>
</citation>
<citation key="gansner_open_1997">
<article_title>An Open Graph Visualization System and Its Applications to Software Engineering</article_title>
<author>Gansner</author>
<journal_title>Software - Practice and Experience - SPE</journal_title>
<volume>30</volume>
<doi>10.1002/1097-024X(200009)30:11&lt;1203::AID-SPE338&gt;3.0.CO;2-N</doi>
<cYear>1997</cYear>
<unstructured_citation>Gansner, E., &amp; North, S. (1997). An Open Graph Visualization System and Its Applications to Software Engineering. Software - Practice and Experience - SPE, 30. https://doi.org/10.1002/1097-024X(200009)30:11&lt;1203::AID-SPE338&gt;3.0.CO;2-N</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.07206/10.21105.joss.07206.pdf
Binary file not shown.
Loading

0 comments on commit c247a25

Please sign in to comment.