Skip to content

Commit

Permalink
Merge pull request #4661 from openjournals/joss.05573
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Oct 8, 2023
2 parents dd7fcea + 8b0309e commit c20bb97
Show file tree
Hide file tree
Showing 5 changed files with 946 additions and 0 deletions.
295 changes: 295 additions & 0 deletions joss.05573/10.21105.joss.05573.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,295 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20231008T074433-4a3d55fd434c098b97d4703ed6db6f88078d6610</doi_batch_id>
<timestamp>20231008074433</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>10</month>
<year>2023</year>
</publication_date>
<journal_volume>
<volume>8</volume>
</journal_volume>
<issue>90</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>brains-py, A framework to support research on
energy-efficient unconventional hardware for machine learning</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Unai</given_name>
<surname>Alegre-Ibarra</surname>
<ORCID>https://orcid.org/0000-0001-5957-7945</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Hans-Christian Ruiz</given_name>
<surname>Euler</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Humaid</given_name>
<surname>A.Mollah</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Bozhidar P.</given_name>
<surname>Petrov</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Srikumar S.</given_name>
<surname>Sastry</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Marcus N.</given_name>
<surname>Boon</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Michel P.</given_name>
<surname>de Jong</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Mohamadreza</given_name>
<surname>Zolfagharinejad</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Florentina M. J.</given_name>
<surname>Uitzetter</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Bram</given_name>
<surname>van de Ven</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>António J. Sousa</given_name>
<surname>de Almeida</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Sachin</given_name>
<surname>Kinge</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Wilfred G.</given_name>
<surname>van der Wiel</surname>
</person_name>
</contributors>
<publication_date>
<month>10</month>
<day>08</day>
<year>2023</year>
</publication_date>
<pages>
<first_page>5573</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05573</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.8410268</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5573</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05573</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05573</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05573.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="kaspar2021rise">
<article_title>The rise of intelligent
matter</article_title>
<author>Kaspar</author>
<journal_title>Nature</journal_title>
<issue>7863</issue>
<volume>594</volume>
<cYear>2021</cYear>
<unstructured_citation>Kaspar, C., Ravoo, B., Wiel, W. G.
van der, Wegner, S., &amp; Pernice, W. (2021). The rise of intelligent
matter. Nature, 594(7863), 345–355.</unstructured_citation>
</citation>
<citation key="chen2020classification">
<article_title>Classification with a disordered dopant-atom
network in silicon</article_title>
<author>Chen</author>
<journal_title>Nature</journal_title>
<issue>7790</issue>
<volume>577</volume>
<doi>10.1038/s41586-019-1901-0</doi>
<cYear>2020</cYear>
<unstructured_citation>Chen, T., Gelder, J. van, Ven, B. van
de, Amitonov, S. V., Wilde, B. de, Euler, H.-C. R., Broersma, H.,
Bobbert, P. A., Zwanenburg, F. A., &amp; Wiel, W. G. van der. (2020).
Classification with a disordered dopant-atom network in silicon. Nature,
577(7790), 341–345.
https://doi.org/10.1038/s41586-019-1901-0</unstructured_citation>
</citation>
<citation key="ruiz2021dopant">
<article_title>Dopant network processing units: Towards
efficient neural network emulators with high-capacity nanoelectronic
nodes</article_title>
<author>Ruiz-Euler</author>
<journal_title>Neuromorphic Computing and
Engineering</journal_title>
<issue>2</issue>
<volume>1</volume>
<doi>10.1088/2634-4386/ac1a7f</doi>
<cYear>2021</cYear>
<unstructured_citation>Ruiz-Euler, H.-C., Alegre-Ibarra, U.,
Ven, B. van de, Broersma, H., Bobbert, P. A., &amp; Wiel, W. G. van der.
(2021). Dopant network processing units: Towards efficient neural
network emulators with high-capacity nanoelectronic nodes. Neuromorphic
Computing and Engineering, 1(2), 024002.
https://doi.org/10.1088/2634-4386/ac1a7f</unstructured_citation>
</citation>
<citation key="sivanandam2008genetic">
<article_title>Genetic algorithms</article_title>
<author>Sivanandam</author>
<journal_title>Introduction to genetic
algorithms</journal_title>
<cYear>2008</cYear>
<unstructured_citation>Sivanandam, S., &amp; Deepa, S.
(2008). Genetic algorithms. In Introduction to genetic algorithms (pp.
15–37). Springer.</unstructured_citation>
</citation>
<citation key="ruiz2020deep">
<article_title>A deep-learning approach to realizing
functionality in nanoelectronic devices</article_title>
<author>Ruiz Euler</author>
<journal_title>Nature nanotechnology</journal_title>
<issue>12</issue>
<volume>15</volume>
<doi>10.1038/s41565-020-00779-y</doi>
<cYear>2020</cYear>
<unstructured_citation>Ruiz Euler, H.-C., Boon, M. N.,
Wildeboer, J. T., Ven, B. van de, Chen, T., Broersma, H., Bobbert, P.
A., &amp; Wiel, W. G. van der. (2020). A deep-learning approach to
realizing functionality in nanoelectronic devices. Nature
Nanotechnology, 15(12), 992–998.
https://doi.org/10.1038/s41565-020-00779-y</unstructured_citation>
</citation>
<citation key="dogo2018comparative">
<article_title>A comparative analysis of gradient
descent-based optimization algorithms on convolutional neural
networks</article_title>
<author>Dogo</author>
<journal_title>2018 international conference on
computational techniques, electronics and mechanical systems
(CTEMS)</journal_title>
<doi>10.1109/CTEMS.2018.8769211</doi>
<cYear>2018</cYear>
<unstructured_citation>Dogo, E., Afolabi, O., Nwulu, N.,
Twala, B., &amp; Aigbavboa, C. (2018). A comparative analysis of
gradient descent-based optimization algorithms on convolutional neural
networks. 2018 International Conference on Computational Techniques,
Electronics and Mechanical Systems (CTEMS), 92–99.
https://doi.org/10.1109/CTEMS.2018.8769211</unstructured_citation>
</citation>
<citation key="lightning">
<article_title>PyTorch lightning: The lightweight PyTorch
wrapper for high-performance AI research.</article_title>
<author>Falcon</author>
<doi>10.5281/zenodo.3828935</doi>
<cYear>2019</cYear>
<unstructured_citation>Falcon, W., &amp; The Pytorch
Lightning team, the. (2019). PyTorch lightning: The lightweight PyTorch
wrapper for high-performance AI research.
https://github.com/Lightning-AI/lightning.
https://doi.org/10.5281/zenodo.3828935</unstructured_citation>
</citation>
<citation key="paszke2019pytorch">
<article_title>Pytorch: An imperative style,
high-performance deep learning library</article_title>
<author>Paszke</author>
<journal_title>Advances in neural information processing
systems</journal_title>
<volume>32</volume>
<cYear>2019</cYear>
<unstructured_citation>Paszke, A., Gross, S., Massa, F.,
Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., &amp; others. (2019). Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information
Processing Systems, 32.</unstructured_citation>
</citation>
<citation key="tertilt2022hopping">
<article_title>Hopping-transport mechanism for
reconfigurable logic in disordered dopant networks</article_title>
<author>Tertilt</author>
<journal_title>Physical Review Applied</journal_title>
<issue>6</issue>
<volume>17</volume>
<doi>10.1103/PhysRevApplied.17.064025</doi>
<cYear>2022</cYear>
<unstructured_citation>Tertilt, H., Bakker, J., Becker, M.,
Wilde, B. de, Klanberg, I., Geurts, B. J., Wiel, W. G. van der, Heuer,
A., &amp; Bobbert, P. A. (2022). Hopping-transport mechanism for
reconfigurable logic in disordered dopant networks. Physical Review
Applied, 17(6), 064025.
https://doi.org/10.1103/PhysRevApplied.17.064025</unstructured_citation>
</citation>
<citation key="chen20211">
<article_title>1/f noise and machine intelligence in a
nonlinear dopant atom network</article_title>
<author>Chen</author>
<journal_title>Small Science</journal_title>
<issue>3</issue>
<volume>1</volume>
<doi>10.1002/smsc.202000014</doi>
<cYear>2021</cYear>
<unstructured_citation>Chen, T., Bobbert, P. A., &amp; Wiel,
W. G. van der. (2021). 1/f noise and machine intelligence in a nonlinear
dopant atom network. Small Science, 1(3), 2000014.
https://doi.org/10.1002/smsc.202000014</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit c20bb97

Please sign in to comment.