Skip to content

Commit

Permalink
Merge pull request #6246 from openjournals/joss.07316
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Dec 10, 2024
2 parents e9abbf8 + 66b6f56 commit bff0fcc
Show file tree
Hide file tree
Showing 3 changed files with 699 additions and 0 deletions.
229 changes: 229 additions & 0 deletions joss.07316/10.21105.joss.07316.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,229 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20241210162303-330fa3a889ed7b894a18c7a389a8a5721813a76f</doi_batch_id>
<timestamp>20241210162303</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>12</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>104</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>ESAT: Environmental Source Apportionment Toolkit Python package</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Deron</given_name>
<surname>Smith</surname>
<affiliations>
<institution><institution_name>United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0009-0009-4015-5270</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Michael</given_name>
<surname>Cyterski</surname>
<affiliations>
<institution><institution_name>United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-8630-873X</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>John M</given_name>
<surname>Johnston</surname>
<affiliations>
<institution><institution_name>United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-5886-7876</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Kurt</given_name>
<surname>Wolfe</surname>
<affiliations>
<institution><institution_name>United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0009-0009-4679-5922</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Rajbir</given_name>
<surname>Parmar</surname>
<affiliations>
<institution><institution_name>United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0009-0005-2221-0433</ORCID>
</person_name>
</contributors>
<publication_date>
<month>12</month>
<day>10</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>7316</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.07316</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.23719/1531870</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/7316</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.07316</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.07316</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.07316.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Bhandari:2022">
<article_title>Source apportionment resolved by time of day for improved deconvolution of primary source contributions to air pollution</article_title>
<author>Bhandari</author>
<journal_title>Atmospheric Measurement Techniques</journal_title>
<issue>20</issue>
<volume>15</volume>
<doi>10.5194/amt-15-6051-2022</doi>
<cYear>2022</cYear>
<unstructured_citation>Bhandari, S., Arub, Z., Habib, G., Apte, J. S., &amp; Hildebrandt Ruiz, L. (2022). Source apportionment resolved by time of day for improved deconvolution of primary source contributions to air pollution. Atmospheric Measurement Techniques, 15(20), 6051–6074. https://doi.org/10.5194/amt-15-6051-2022</unstructured_citation>
</citation>
<citation key="Brown:2015">
<article_title>Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results</article_title>
<author>Brown</author>
<journal_title>Science of the Total Environment</journal_title>
<volume>518</volume>
<doi>10.1016/j.scitotenv.2015.01.022</doi>
<cYear>2015</cYear>
<unstructured_citation>Brown, S. G., Eberly, S., Paatero, P., &amp; Norris, G. A. (2015). Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Science of the Total Environment, 518, 626–635. https://doi.org/10.1016/j.scitotenv.2015.01.022</unstructured_citation>
</citation>
<citation key="DeMelo:2012">
<article_title>Semi-NMF and weighted semi-NMF algorithms comparison</article_title>
<author>Melo</author>
<cYear>2012</cYear>
<unstructured_citation>Melo, E. V. de, &amp; Wainer, J. (2012). Semi-NMF and weighted semi-NMF algorithms comparison.</unstructured_citation>
</citation>
<citation key="Ding:2008">
<article_title>Convex and semi-nonnegative matrix factorizations</article_title>
<author>Ding</author>
<journal_title>IEEE transactions on pattern analysis and machine intelligence</journal_title>
<issue>1</issue>
<volume>32</volume>
<doi>10.1109/TPAMI.2008.277</doi>
<cYear>2008</cYear>
<unstructured_citation>Ding, C. H., Li, T., &amp; Jordan, M. I. (2008). Convex and semi-nonnegative matrix factorizations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1), 45–55. https://doi.org/10.1109/TPAMI.2008.277</unstructured_citation>
</citation>
<citation key="Jiang:2019">
<article_title>Application of positive matrix factorization to identify potential sources of water quality deterioration of Huaihe River, China</article_title>
<author>Jiang</author>
<journal_title>Applied Water Science</journal_title>
<issue>63, 3</issue>
<volume>9</volume>
<doi>10.1007/s13201-019-0938-4</doi>
<cYear>2019</cYear>
<unstructured_citation>Jiang, J., Khan, A. U., &amp; Shi, B. (2019). Application of positive matrix factorization to identify potential sources of water quality deterioration of Huaihe River, China. Applied Water Science, 9(63, 3). https://doi.org/10.1007/s13201-019-0938-4</unstructured_citation>
</citation>
<citation key="Mamum:2021">
<article_title>Application of Multivariate Statistical Techniques and Water Quality Index for the Assessment of Water Quality and Apportionment of Pollution Sources in the Yeongsan River, South Korea</article_title>
<author>Mamun</author>
<journal_title>International Journal of Environmental Research and Public Health</journal_title>
<issue>16</issue>
<volume>18</volume>
<doi>10.3390/ijerph18168268</doi>
<issn>1660-4601</issn>
<cYear>2021</cYear>
<unstructured_citation>Mamun, M., &amp; An, K.-G. (2021). Application of Multivariate Statistical Techniques and Water Quality Index for the Assessment of Water Quality and Apportionment of Pollution Sources in the Yeongsan River, South Korea. International Journal of Environmental Research and Public Health, 18(16). https://doi.org/10.3390/ijerph18168268</unstructured_citation>
</citation>
<citation key="Paatero:1994">
<article_title>Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values</article_title>
<author>Paatero</author>
<journal_title>Environmetrics</journal_title>
<issue>2</issue>
<volume>5</volume>
<doi>10.1002/env.3170050203</doi>
<cYear>1994</cYear>
<unstructured_citation>Paatero, P., &amp; Tapper, U. (1994). Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2), 111–126. https://doi.org/10.1002/env.3170050203</unstructured_citation>
</citation>
<citation key="Paatero:1999">
<article_title>The multilinear engine—a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model</article_title>
<author>Paatero</author>
<journal_title>Journal of Computational and Graphical Statistics</journal_title>
<issue>4</issue>
<volume>8</volume>
<doi>10.1080/10618600.1999.10474853</doi>
<cYear>1999</cYear>
<unstructured_citation>Paatero, P. (1999). The multilinear engine—a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. Journal of Computational and Graphical Statistics, 8(4), 854–888. https://doi.org/10.1080/10618600.1999.10474853</unstructured_citation>
</citation>
<citation key="Paatero:2014">
<article_title>Methods for estimating uncertainty in factor analytic solutions</article_title>
<author>Paatero</author>
<journal_title>Atmospheric Measurement Techniques</journal_title>
<issue>3</issue>
<volume>7</volume>
<doi>10.5194/amt-7-781-2014</doi>
<cYear>2014</cYear>
<unstructured_citation>Paatero, P., Eberly, S., Brown, S. G., &amp; Norris, G. A. (2014). Methods for estimating uncertainty in factor analytic solutions. Atmospheric Measurement Techniques, 7(3), 781–797. https://doi.org/10.5194/amt-7-781-2014</unstructured_citation>
</citation>
<citation key="PMF5:2014">
<article_title>Positive Matrix Factorization Model for Environmental Data Analyses</article_title>
<author>EPA</author>
<cYear>2014</cYear>
<unstructured_citation>EPA, U. S. (2014). Positive Matrix Factorization Model for Environmental Data Analyses. https://www.epa.gov/air-research/positive-matrix-factorization-model-environmental-data-analyses</unstructured_citation>
</citation>
<citation key="Wang:2006">
<article_title>LS-NMF: A modified non-negative matrix factorization algorithm utilizing uncertainty estimates</article_title>
<author>Wang</author>
<journal_title>BMC bioinformatics</journal_title>
<volume>7</volume>
<doi>10.1186/1471-2105-7-175</doi>
<cYear>2006</cYear>
<unstructured_citation>Wang, G., Kossenkov, A. V., &amp; Ochs, M. F. (2006). LS-NMF: A modified non-negative matrix factorization algorithm utilizing uncertainty estimates. BMC Bioinformatics, 7, 1–10. https://doi.org/10.1186/1471-2105-7-175</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.07316/10.21105.joss.07316.pdf
Binary file not shown.
Loading

0 comments on commit bff0fcc

Please sign in to comment.