Skip to content

Commit

Permalink
Merge pull request #5665 from openjournals/joss.06742
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jul 23, 2024
2 parents 370088e + 85aa995 commit b8b71b9
Show file tree
Hide file tree
Showing 4 changed files with 916 additions and 0 deletions.
301 changes: 301 additions & 0 deletions joss.06742/10.21105.joss.06742.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,301 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240723203528-266f6c92416988586929e83e4b250decc98a432e</doi_batch_id>
<timestamp>20240723203528</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>07</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>99</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>Clouddrift: a Python package to accelerate the use of
Lagrangian data for atmospheric, oceanic, and climate sciences</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Shane</given_name>
<surname>Elipot</surname>
<ORCID>https://orcid.org/0000-0001-6051-5426</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Philippe</given_name>
<surname>Miron</surname>
<ORCID>https://orcid.org/0000-0002-8520-6221</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Milan</given_name>
<surname>Curcic</surname>
<ORCID>https://orcid.org/0000-0002-8822-7749</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Kevin</given_name>
<surname>Santana</surname>
<ORCID>https://orcid.org/0009-0003-8383-1212</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Rick</given_name>
<surname>Lumpkin</surname>
<ORCID>https://orcid.org/0000-0002-6690-1704</ORCID>
</person_name>
</contributors>
<publication_date>
<month>07</month>
<day>23</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6742</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06742</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.12583739</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6742</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06742</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06742</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06742.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Lacasce:2008">
<article_title>Statistics from Lagrangian
observations</article_title>
<author>LaCasce</author>
<journal_title>Progress in Oceanography</journal_title>
<issue>1</issue>
<volume>77</volume>
<doi>10.1016/j.pocean.2008.02.002</doi>
<issn>0079-6611</issn>
<cYear>2008</cYear>
<unstructured_citation>LaCasce, J. H. (2008). Statistics
from Lagrangian observations. Progress in Oceanography, 77(1), 1–29.
https://doi.org/10.1016/j.pocean.2008.02.002</unstructured_citation>
</citation>
<citation key="Vansebille:2018">
<article_title>Lagrangian ocean analysis: Fundamentals and
practices</article_title>
<author>van Sebille</author>
<journal_title>Ocean Modelling</journal_title>
<volume>121</volume>
<doi>10.1016/j.ocemod.2017.11.008</doi>
<issn>1463-5003</issn>
<cYear>2018</cYear>
<unstructured_citation>van Sebille, E., Griffies, S. M.,
Abernathey, R., Adams, T. P., Berloff, P., Biastoch, A., Blanke, B.,
Chassignet, E. P., Cheng, Y., Cotter, C. J., Deleersnijder, E., Döös,
K., Drake, H. F., Drijfhout, S., Gary, S. F., Heemink, A. W., Kjellsson,
J., Koszalka, I. M., Lange, M., … Zika, J. D. (2018). Lagrangian ocean
analysis: Fundamentals and practices. Ocean Modelling, 121, 49–75.
https://doi.org/10.1016/j.ocemod.2017.11.008</unstructured_citation>
</citation>
<citation key="Elipot:2022">
<article_title>Hourly location, current velocity, and
temperature collected from Global Drifter Program drifters
world-wide</article_title>
<author>Elipot</author>
<doi>10.25921/x46c-3620</doi>
<cYear>2022</cYear>
<unstructured_citation>Elipot, S., Sykulski, A., Lumpkin,
R., Centurioni, L., &amp; Pazos, M. (2022). Hourly location, current
velocity, and temperature collected from Global Drifter Program drifters
world-wide. NOAA National Centers for Environmental Information.
https://doi.org/10.25921/x46c-3620</unstructured_citation>
</citation>
<citation key="Delandmeter:2019">
<article_title>The Parcels v2.0 Lagrangian framework: New
field interpolation schemes</article_title>
<author>Delandmeter</author>
<journal_title>Geoscientific Model
Development</journal_title>
<issue>8</issue>
<volume>12</volume>
<doi>10.5194/gmd-12-3571-2019</doi>
<cYear>2019</cYear>
<unstructured_citation>Delandmeter, P., &amp; Sebille, E.
van. (2019). The Parcels v2.0 Lagrangian framework: New field
interpolation schemes. Geoscientific Model Development, 12(8),
3571–3584.
https://doi.org/10.5194/gmd-12-3571-2019</unstructured_citation>
</citation>
<citation key="Stein:2015">
<article_title>NOAA’s HYSPLIT atmospheric transport and
dispersion modeling system</article_title>
<author>Stein</author>
<journal_title>Bulletin of the American Meteorological
Society</journal_title>
<issue>12</issue>
<volume>96</volume>
<doi>10.1175/BAMS-D-14-00110.1</doi>
<cYear>2015</cYear>
<unstructured_citation>Stein, A. F., Draxler, R. R., Rolph,
G. D., Stunder, B. J., Cohen, M. D., &amp; Ngan, F. (2015). NOAA’s
HYSPLIT atmospheric transport and dispersion modeling system. Bulletin
of the American Meteorological Society, 96(12), 2059–2077.
https://doi.org/10.1175/BAMS-D-14-00110.1</unstructured_citation>
</citation>
<citation key="Maze:2020">
<article_title>Argopy: A Python library for Argo ocean data
analysis</article_title>
<author>Maze</author>
<journal_title>Journal of Open Source
Software</journal_title>
<issue>53</issue>
<volume>5</volume>
<doi>10.21105/joss.02425</doi>
<cYear>2020</cYear>
<unstructured_citation>Maze, G., &amp; Balem, K. (2020).
Argopy: A Python library for Argo ocean data analysis. Journal of Open
Source Software, 5(53), 2425.
https://doi.org/10.21105/joss.02425</unstructured_citation>
</citation>
<citation key="Lilly:2021">
<article_title>jLab: A data analysis package for
Matlab</article_title>
<author>Lilly</author>
<doi>10.5281/zenodo.4547006</doi>
<cYear>2021</cYear>
<unstructured_citation>Lilly, J. M. (2021). jLab: A data
analysis package for Matlab.
https://doi.org/10.5281/zenodo.4547006</unstructured_citation>
</citation>
<citation key="Hoyer:2017">
<article_title>Xarray: ND labeled Arrays and Datasets in
Python</article_title>
<author>Hoyer</author>
<journal_title>Journal of Open Research
Software</journal_title>
<issue>1</issue>
<volume>5</volume>
<doi>10.5334/jors.148</doi>
<cYear>2017</cYear>
<unstructured_citation>Hoyer, S., &amp; Hamman, J. (2017).
Xarray: ND labeled Arrays and Datasets in Python. Journal of Open
Research Software, 5(1), 10–10.
https://doi.org/10.5334/jors.148</unstructured_citation>
</citation>
<citation key="Harris:2020">
<article_title>Array programming with NumPy</article_title>
<author>Harris</author>
<journal_title>Nature</journal_title>
<issue>7825</issue>
<volume>585</volume>
<doi>10.1038/s41586-020-2649-2</doi>
<cYear>2020</cYear>
<unstructured_citation>Harris, C. R., Millman, K. J., Walt,
S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E.,
Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S.,
Kerkwijk, M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M.,
Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy.
Nature, 585(7825), 357–362.
https://doi.org/10.1038/s41586-020-2649-2</unstructured_citation>
</citation>
<citation key="Virtanen:2020">
<article_title>SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python</article_title>
<author>Virtanen</author>
<journal_title>Nature Methods</journal_title>
<volume>17</volume>
<doi>10.1038/s41592-019-0686-2</doi>
<cYear>2020</cYear>
<unstructured_citation>Virtanen, P., Gommers, R., Oliphant,
T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson,
P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,
Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods, 17,
261–272.
https://doi.org/10.1038/s41592-019-0686-2</unstructured_citation>
</citation>
<citation key="reback2020pandas">
<article_title>Pandas-dev/pandas: Pandas</article_title>
<author>The pandas development team</author>
<doi>10.5281/zenodo.3509134</doi>
<cYear>2024</cYear>
<unstructured_citation>The pandas development team. (2024).
Pandas-dev/pandas: Pandas (latest). Zenodo.
https://doi.org/10.5281/zenodo.3509134</unstructured_citation>
</citation>
<citation key="mckinney-proc-scipy-2010">
<article_title>Data Structures for Statistical Computing in
Python</article_title>
<author>McKinney</author>
<journal_title>Proceedings of the 9th Python in Science
Conference</journal_title>
<doi>10.25080/Majora-92bf1922-00a</doi>
<cYear>2010</cYear>
<unstructured_citation>McKinney, Wes. (2010). Data
Structures for Statistical Computing in Python. In Stéfan van der Walt
&amp; Jarrod Millman (Eds.), Proceedings of the 9th Python in Science
Conference (pp. 56–61).
https://doi.org/10.25080/Majora-92bf1922-00a</unstructured_citation>
</citation>
<citation key="Stern:2022">
<article_title>Pangeo Forge: Crowdsourcing Analysis-Ready,
Cloud Optimized Data Production</article_title>
<author>Stern</author>
<journal_title>Frontiers in Climate</journal_title>
<volume>3</volume>
<doi>10.3389/fclim.2021.782909</doi>
<issn>2624-9553</issn>
<cYear>2022</cYear>
<unstructured_citation>Stern, C., Abernathey, R., Hamman,
J., Wegener, R., Lepore, C., Harkins, S., &amp; Merose, A. (2022).
Pangeo Forge: Crowdsourcing Analysis-Ready, Cloud Optimized Data
Production. Frontiers in Climate, 3.
https://doi.org/10.3389/fclim.2021.782909</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06742/10.21105.joss.06742.pdf
Binary file not shown.
Loading

0 comments on commit b8b71b9

Please sign in to comment.