Skip to content

Commit

Permalink
Merge pull request #5204 from openjournals/joss.06276
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Apr 3, 2024
2 parents c59c659 + d72727a commit b24863f
Show file tree
Hide file tree
Showing 5 changed files with 1,045 additions and 0 deletions.
377 changes: 377 additions & 0 deletions joss.06276/10.21105.joss.06276.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,377 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240403T144144-6c26a7dc7ff4522f413abab1651b18dd75cb0d25</doi_batch_id>
<timestamp>20240403144144</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>04</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>96</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>pypfilt: a particle filter for Python</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Robert</given_name>
<surname>Moss</surname>
<ORCID>https://orcid.org/0000-0002-4568-2012</ORCID>
</person_name>
</contributors>
<publication_date>
<month>04</month>
<day>03</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6276</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06276</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.26188/25529974</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6276</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06276</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06276</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06276.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Moss16">
<article_title>Forecasting influenza outbreak dynamics in
Melbourne from Internet search query surveillance data</article_title>
<author>Moss</author>
<journal_title>Influenza and Other Respiratory
Viruses</journal_title>
<issue>4</issue>
<volume>10</volume>
<doi>10.1111/irv.12376</doi>
<cYear>2016</cYear>
<unstructured_citation>Moss, R., Zarebski, A., Dawson, P.,
&amp; McCaw, J. M. (2016). Forecasting influenza outbreak dynamics in
Melbourne from Internet search query surveillance data. Influenza and
Other Respiratory Viruses, 10(4), 314–323.
https://doi.org/10.1111/irv.12376</unstructured_citation>
</citation>
<citation key="Moss16a">
<article_title>Retrospective forecasting of the 2010–14
Melbourne influenza seasons using multiple surveillance
systems</article_title>
<author>Moss</author>
<journal_title>Epidemiology and Infection</journal_title>
<issue>1</issue>
<volume>145</volume>
<doi>10.1017/S0950268816002053</doi>
<cYear>2017</cYear>
<unstructured_citation>Moss, R., Zarebski, A., Dawson, P.,
&amp; McCaw, J. M. (2017). Retrospective forecasting of the 2010–14
Melbourne influenza seasons using multiple surveillance systems.
Epidemiology and Infection, 145(1), 156–169.
https://doi.org/10.1017/S0950268816002053</unstructured_citation>
</citation>
<citation key="Zarebs17">
<article_title>Model selection for seasonal influenza
forecasting</article_title>
<author>Zarebski</author>
<journal_title>Infectious Disease Modelling</journal_title>
<issue>1</issue>
<volume>2</volume>
<doi>10.1016/j.idm.2016.12.004</doi>
<issn>2468-0427</issn>
<cYear>2017</cYear>
<unstructured_citation>Zarebski, A. E., Dawson, P., McCaw,
J. M., &amp; Moss, R. (2017). Model selection for seasonal influenza
forecasting. Infectious Disease Modelling, 2(1), 56–70.
https://doi.org/10.1016/j.idm.2016.12.004</unstructured_citation>
</citation>
<citation key="Moss18">
<article_title>Epidemic forecasts as a tool for public
health: Interpretation and (re)calibration</article_title>
<author>Moss</author>
<journal_title>Australian and New Zealand Journal of Public
Health</journal_title>
<issue>1</issue>
<volume>42</volume>
<doi>10.1111/1753-6405.12750</doi>
<cYear>2018</cYear>
<unstructured_citation>Moss, R., Fielding, J. E., Franklin,
L. J., Stephens, N., McVernon, J., Dawson, P., &amp; McCaw., J. M.
(2018). Epidemic forecasts as a tool for public health: Interpretation
and (re)calibration. Australian and New Zealand Journal of Public
Health, 42(1), 69–76.
https://doi.org/10.1111/1753-6405.12750</unstructured_citation>
</citation>
<citation key="CIVSEC18">
<article_title>Disease forecasting system takes out National
Innovation Awards</article_title>
<author>Pyne</author>
<journal_title>Media release</journal_title>
<cYear>2018</cYear>
<unstructured_citation>Pyne, C. (2018). Disease forecasting
system takes out National Innovation Awards. In Media release.
Australian Department of Defence.
https://www.minister.defence.gov.au/media-releases/2018-05-11/disease-forecasting-system-takes-out-national-innovation-awards</unstructured_citation>
</citation>
<citation key="Moss19a">
<article_title>Accounting for healthcare-seeking behaviours
and testing practices in real-time influenza forecasts</article_title>
<author>Moss</author>
<journal_title>Tropical Medicine and Infectious
Disease</journal_title>
<issue>1</issue>
<volume>4</volume>
<doi>10.3390/tropicalmed4010012</doi>
<cYear>2019</cYear>
<unstructured_citation>Moss, R., Zarebski, A. E., Carlson,
S. J., &amp; McCaw., J. M. (2019). Accounting for healthcare-seeking
behaviours and testing practices in real-time influenza forecasts.
Tropical Medicine and Infectious Disease, 4(1), 12.
https://doi.org/10.3390/tropicalmed4010012</unstructured_citation>
</citation>
<citation key="Moss19b">
<article_title>Anatomy of a seasonal influenza epidemic
forecast</article_title>
<author>Moss</author>
<journal_title>Communicable Diseases
Intelligence</journal_title>
<volume>43</volume>
<doi>10.33321/cdi.2019.43.7</doi>
<cYear>2019</cYear>
<unstructured_citation>Moss, R., Zarebski, A. E., Dawson,
P., Franklin, L. J., Birrell, F. A., &amp; McCaw., J. M. (2019). Anatomy
of a seasonal influenza epidemic forecast. Communicable Diseases
Intelligence, 43, 1–14.
https://doi.org/10.33321/cdi.2019.43.7</unstructured_citation>
</citation>
<citation key="Price20">
<article_title>Early analysis of the Australian COVID-19
epidemic</article_title>
<author>Price</author>
<journal_title>eLife</journal_title>
<volume>9</volume>
<doi>10.7554/eLife.58785</doi>
<cYear>2020</cYear>
<unstructured_citation>Price, D. J., Shearer, F. M., Meehan,
M. T., McBryde, E. S., Moss, R., Golding, N., Conway, E. J., Dawson, P.,
Cromer, D., Wood, J., Abbott, S., McVernon, J., &amp; McCaw, J. M.
(2020). Early analysis of the Australian COVID-19 epidemic. eLife, 9,
e58785. https://doi.org/10.7554/eLife.58785</unstructured_citation>
</citation>
<citation key="Shearer20">
<article_title>Infectious disease pandemic planning and
response: Incorporating decision analysis</article_title>
<author>Shearer</author>
<journal_title>PLOS Medicine</journal_title>
<volume>17</volume>
<doi>10.1371/journal.pmed.1003018</doi>
<cYear>2020</cYear>
<unstructured_citation>Shearer, F. M., Moss, R., McVernon,
J., Ross, J. V., &amp; McCaw, J. M. (2020). Infectious disease pandemic
planning and response: Incorporating decision analysis. PLOS Medicine,
17, e1003018.
https://doi.org/10.1371/journal.pmed.1003018</unstructured_citation>
</citation>
<citation key="Moss20">
<article_title>Coronavirus disease model to inform
transmission-reducing measures and health system preparedness,
Australia</article_title>
<author>Moss</author>
<journal_title>Emerging Infectious Diseases</journal_title>
<issue>12</issue>
<volume>26</volume>
<doi>10.3201/eid2612.202530</doi>
<cYear>2020</cYear>
<unstructured_citation>Moss, R., Wood, J., Brown, D.,
Shearer, F. M., Black, A. J., Glass, K., Cheng, A. C., McCaw, J. M.,
&amp; McVernon, J. (2020). Coronavirus disease model to inform
transmission-reducing measures and health system preparedness,
Australia. Emerging Infectious Diseases, 26(12), 2844–2853.
https://doi.org/10.3201/eid2612.202530</unstructured_citation>
</citation>
<citation key="Moss23">
<article_title>Forecasting COVID-19 activity in Australia to
support pandemic response: May to October 2020</article_title>
<author>Moss</author>
<journal_title>Scientific Reports</journal_title>
<issue>1</issue>
<volume>13</volume>
<doi>10.1038/s41598-023-35668-6</doi>
<cYear>2023</cYear>
<unstructured_citation>Moss, R., Price, D. J., Golding, N.,
Dawson, P., McVernon, J., Hyndman, R. J., Shearer, F. M., &amp; McCaw,
J. M. (2023). Forecasting COVID-19 activity in Australia to support
pandemic response: May to October 2020. Scientific Reports, 13(1).
https://doi.org/10.1038/s41598-023-35668-6</unstructured_citation>
</citation>
<citation key="Kitaga96">
<article_title>Monte Carlo filter and smoother for
non-Gaussian nonlinear state space models</article_title>
<author>Kitagawa</author>
<journal_title>Journal of Computational and Graphical
Statistics</journal_title>
<issue>1</issue>
<volume>5</volume>
<doi>10.1080/10618600.1996.10474692</doi>
<cYear>1996</cYear>
<unstructured_citation>Kitagawa, G. (1996). Monte Carlo
filter and smoother for non-Gaussian nonlinear state space models.
Journal of Computational and Graphical Statistics, 5(1), 1–25.
https://doi.org/10.1080/10618600.1996.10474692</unstructured_citation>
</citation>
<citation key="Doucet01">
<volume_title>Sequential Monte Carlo methods in
practice</volume_title>
<doi>10.1007/978-1-4757-3437-9</doi>
<isbn>978-1-4419-2887-0</isbn>
<cYear>2001</cYear>
<unstructured_citation>Doucet, A., Freitas, N. de, &amp;
Gordon, N. (Eds.). (2001). Sequential Monte Carlo methods in practice
(1st ed.). Springer.
https://doi.org/10.1007/978-1-4757-3437-9</unstructured_citation>
</citation>
<citation key="Musso01">
<article_title>Improving regularised particle
filters</article_title>
<author>Musso</author>
<journal_title>Sequential Monte Carlo methods in
practice</journal_title>
<doi>10.1007/978-1-4757-3437-9_12</doi>
<cYear>2001</cYear>
<unstructured_citation>Musso, C., Oudjane, N., &amp; Le
Gland, F. (2001). Improving regularised particle filters. In Sequential
Monte Carlo methods in practice (pp. 247–271). Springer.
https://doi.org/10.1007/978-1-4757-3437-9_12</unstructured_citation>
</citation>
<citation key="Chopin20">
<volume_title>An introduction to Sequential Monte
Carlo</volume_title>
<author>Chopin</author>
<doi>10.1007/978-3-030-47845-2</doi>
<cYear>2020</cYear>
<unstructured_citation>Chopin, N., &amp; Papaspiliopoulos,
O. (2020). An introduction to Sequential Monte Carlo. Springer.
https://doi.org/10.1007/978-3-030-47845-2</unstructured_citation>
</citation>
<citation key="Hyndma21">
<volume_title>Forecasting: Principles and
practice</volume_title>
<author>Hyndman</author>
<cYear>2021</cYear>
<unstructured_citation>Hyndman, R. J., &amp; Athanasopoulos,
G. (2021). Forecasting: Principles and practice (3rd ed.). OTexts.
https://otexts.com/fpp3</unstructured_citation>
</citation>
<citation key="PyMC">
<article_title>PyMC: A modern, and comprehensive
probabilistic programming framework in Python</article_title>
<author>Abril-Pla</author>
<journal_title>PeerJ Computer Science</journal_title>
<volume>9</volume>
<doi>10.7717/peerj-cs.1516</doi>
<issn>2376-5992</issn>
<cYear>2023</cYear>
<unstructured_citation>Abril-Pla, O., Andreani, V., Carroll,
C., Dong, L., Fonnesbeck, C. J., Kochurov, M., Kumar, R., Lao, J.,
Luhmann, C. C., Martin, O. A., Osthege, M., Vieira, R., Wiecki, T.,
&amp; Zinkov, R. (2023). PyMC: A modern, and comprehensive probabilistic
programming framework in Python. PeerJ Computer Science, 9, e1516.
https://doi.org/10.7717/peerj-cs.1516</unstructured_citation>
</citation>
<citation key="Pyro">
<article_title>Pyro: Deep universal probabilistic
programming</article_title>
<author>Bingham</author>
<journal_title>Journal of Machine Learning
Research</journal_title>
<volume>20</volume>
<cYear>2019</cYear>
<unstructured_citation>Bingham, E., Chen, J. P., Jankowiak,
M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P.
A., Horsfall, P., &amp; Goodman, N. D. (2019). Pyro: Deep universal
probabilistic programming. Journal of Machine Learning Research, 20,
28:1–28:6.
http://jmlr.org/papers/v20/18-403.html</unstructured_citation>
</citation>
<citation key="StoneSoup">
<article_title>Dstl/stone-soup: v1.1 release</article_title>
<author>Hiscocks</author>
<doi>10.5281/zenodo.8308177</doi>
<cYear>2023</cYear>
<unstructured_citation>Hiscocks, S., Harrald, O., Barr, J.,
Perree, N., Vladimirov, L., Green, R., Rosoman, O., etfrogers-dstl,
idorrington-dstl, Glover, T., Hunter, E., Wright, J., gawebb-dstl,
Harris, M., Fraser, B., spike, Pritchett, H., jjosborne-dstl, Carniglia,
P., … Hiles, J. (2023). Dstl/stone-soup: v1.1 release (Version v1.1).
Zenodo. https://doi.org/10.5281/zenodo.8308177</unstructured_citation>
</citation>
<citation key="FilterPy">
<article_title>FilterPy - Kalman filters and other optimal
and non-optimal estimation filters in Python</article_title>
<author>Labbe</author>
<journal_title>GitHub repository</journal_title>
<cYear>2022</cYear>
<unstructured_citation>Labbe, R. R. (2022). FilterPy -
Kalman filters and other optimal and non-optimal estimation filters in
Python. In GitHub repository. GitHub.
https://github.com/rlabbe/filterpy</unstructured_citation>
</citation>
<citation key="SMCPy">
<article_title>SMCPy - Sequential Monte Carlo with
Python</article_title>
<author>Leser</author>
<journal_title>GitHub repository</journal_title>
<cYear>2023</cYear>
<unstructured_citation>Leser, P., &amp; Wang, M. (2023).
SMCPy - Sequential Monte Carlo with Python. In GitHub repository.
GitHub. https://github.com/nasa/SMCPy</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit b24863f

Please sign in to comment.