-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #5204 from openjournals/joss.06276
Merging automatically
- Loading branch information
Showing
5 changed files
with
1,045 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,377 @@ | ||
<?xml version="1.0" encoding="UTF-8"?> | ||
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1" | ||
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" | ||
xmlns:rel="http://www.crossref.org/relations.xsd" | ||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" | ||
version="5.3.1" | ||
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd"> | ||
<head> | ||
<doi_batch_id>20240403T144144-6c26a7dc7ff4522f413abab1651b18dd75cb0d25</doi_batch_id> | ||
<timestamp>20240403144144</timestamp> | ||
<depositor> | ||
<depositor_name>JOSS Admin</depositor_name> | ||
<email_address>[email protected]</email_address> | ||
</depositor> | ||
<registrant>The Open Journal</registrant> | ||
</head> | ||
<body> | ||
<journal> | ||
<journal_metadata> | ||
<full_title>Journal of Open Source Software</full_title> | ||
<abbrev_title>JOSS</abbrev_title> | ||
<issn media_type="electronic">2475-9066</issn> | ||
<doi_data> | ||
<doi>10.21105/joss</doi> | ||
<resource>https://joss.theoj.org</resource> | ||
</doi_data> | ||
</journal_metadata> | ||
<journal_issue> | ||
<publication_date media_type="online"> | ||
<month>04</month> | ||
<year>2024</year> | ||
</publication_date> | ||
<journal_volume> | ||
<volume>9</volume> | ||
</journal_volume> | ||
<issue>96</issue> | ||
</journal_issue> | ||
<journal_article publication_type="full_text"> | ||
<titles> | ||
<title>pypfilt: a particle filter for Python</title> | ||
</titles> | ||
<contributors> | ||
<person_name sequence="first" contributor_role="author"> | ||
<given_name>Robert</given_name> | ||
<surname>Moss</surname> | ||
<ORCID>https://orcid.org/0000-0002-4568-2012</ORCID> | ||
</person_name> | ||
</contributors> | ||
<publication_date> | ||
<month>04</month> | ||
<day>03</day> | ||
<year>2024</year> | ||
</publication_date> | ||
<pages> | ||
<first_page>6276</first_page> | ||
</pages> | ||
<publisher_item> | ||
<identifier id_type="doi">10.21105/joss.06276</identifier> | ||
</publisher_item> | ||
<ai:program name="AccessIndicators"> | ||
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
</ai:program> | ||
<rel:program> | ||
<rel:related_item> | ||
<rel:description>Software archive</rel:description> | ||
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.26188/25529974</rel:inter_work_relation> | ||
</rel:related_item> | ||
<rel:related_item> | ||
<rel:description>GitHub review issue</rel:description> | ||
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6276</rel:inter_work_relation> | ||
</rel:related_item> | ||
</rel:program> | ||
<doi_data> | ||
<doi>10.21105/joss.06276</doi> | ||
<resource>https://joss.theoj.org/papers/10.21105/joss.06276</resource> | ||
<collection property="text-mining"> | ||
<item> | ||
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06276.pdf</resource> | ||
</item> | ||
</collection> | ||
</doi_data> | ||
<citation_list> | ||
<citation key="Moss16"> | ||
<article_title>Forecasting influenza outbreak dynamics in | ||
Melbourne from Internet search query surveillance data</article_title> | ||
<author>Moss</author> | ||
<journal_title>Influenza and Other Respiratory | ||
Viruses</journal_title> | ||
<issue>4</issue> | ||
<volume>10</volume> | ||
<doi>10.1111/irv.12376</doi> | ||
<cYear>2016</cYear> | ||
<unstructured_citation>Moss, R., Zarebski, A., Dawson, P., | ||
& McCaw, J. M. (2016). Forecasting influenza outbreak dynamics in | ||
Melbourne from Internet search query surveillance data. Influenza and | ||
Other Respiratory Viruses, 10(4), 314–323. | ||
https://doi.org/10.1111/irv.12376</unstructured_citation> | ||
</citation> | ||
<citation key="Moss16a"> | ||
<article_title>Retrospective forecasting of the 2010–14 | ||
Melbourne influenza seasons using multiple surveillance | ||
systems</article_title> | ||
<author>Moss</author> | ||
<journal_title>Epidemiology and Infection</journal_title> | ||
<issue>1</issue> | ||
<volume>145</volume> | ||
<doi>10.1017/S0950268816002053</doi> | ||
<cYear>2017</cYear> | ||
<unstructured_citation>Moss, R., Zarebski, A., Dawson, P., | ||
& McCaw, J. M. (2017). Retrospective forecasting of the 2010–14 | ||
Melbourne influenza seasons using multiple surveillance systems. | ||
Epidemiology and Infection, 145(1), 156–169. | ||
https://doi.org/10.1017/S0950268816002053</unstructured_citation> | ||
</citation> | ||
<citation key="Zarebs17"> | ||
<article_title>Model selection for seasonal influenza | ||
forecasting</article_title> | ||
<author>Zarebski</author> | ||
<journal_title>Infectious Disease Modelling</journal_title> | ||
<issue>1</issue> | ||
<volume>2</volume> | ||
<doi>10.1016/j.idm.2016.12.004</doi> | ||
<issn>2468-0427</issn> | ||
<cYear>2017</cYear> | ||
<unstructured_citation>Zarebski, A. E., Dawson, P., McCaw, | ||
J. M., & Moss, R. (2017). Model selection for seasonal influenza | ||
forecasting. Infectious Disease Modelling, 2(1), 56–70. | ||
https://doi.org/10.1016/j.idm.2016.12.004</unstructured_citation> | ||
</citation> | ||
<citation key="Moss18"> | ||
<article_title>Epidemic forecasts as a tool for public | ||
health: Interpretation and (re)calibration</article_title> | ||
<author>Moss</author> | ||
<journal_title>Australian and New Zealand Journal of Public | ||
Health</journal_title> | ||
<issue>1</issue> | ||
<volume>42</volume> | ||
<doi>10.1111/1753-6405.12750</doi> | ||
<cYear>2018</cYear> | ||
<unstructured_citation>Moss, R., Fielding, J. E., Franklin, | ||
L. J., Stephens, N., McVernon, J., Dawson, P., & McCaw., J. M. | ||
(2018). Epidemic forecasts as a tool for public health: Interpretation | ||
and (re)calibration. Australian and New Zealand Journal of Public | ||
Health, 42(1), 69–76. | ||
https://doi.org/10.1111/1753-6405.12750</unstructured_citation> | ||
</citation> | ||
<citation key="CIVSEC18"> | ||
<article_title>Disease forecasting system takes out National | ||
Innovation Awards</article_title> | ||
<author>Pyne</author> | ||
<journal_title>Media release</journal_title> | ||
<cYear>2018</cYear> | ||
<unstructured_citation>Pyne, C. (2018). Disease forecasting | ||
system takes out National Innovation Awards. In Media release. | ||
Australian Department of Defence. | ||
https://www.minister.defence.gov.au/media-releases/2018-05-11/disease-forecasting-system-takes-out-national-innovation-awards</unstructured_citation> | ||
</citation> | ||
<citation key="Moss19a"> | ||
<article_title>Accounting for healthcare-seeking behaviours | ||
and testing practices in real-time influenza forecasts</article_title> | ||
<author>Moss</author> | ||
<journal_title>Tropical Medicine and Infectious | ||
Disease</journal_title> | ||
<issue>1</issue> | ||
<volume>4</volume> | ||
<doi>10.3390/tropicalmed4010012</doi> | ||
<cYear>2019</cYear> | ||
<unstructured_citation>Moss, R., Zarebski, A. E., Carlson, | ||
S. J., & McCaw., J. M. (2019). Accounting for healthcare-seeking | ||
behaviours and testing practices in real-time influenza forecasts. | ||
Tropical Medicine and Infectious Disease, 4(1), 12. | ||
https://doi.org/10.3390/tropicalmed4010012</unstructured_citation> | ||
</citation> | ||
<citation key="Moss19b"> | ||
<article_title>Anatomy of a seasonal influenza epidemic | ||
forecast</article_title> | ||
<author>Moss</author> | ||
<journal_title>Communicable Diseases | ||
Intelligence</journal_title> | ||
<volume>43</volume> | ||
<doi>10.33321/cdi.2019.43.7</doi> | ||
<cYear>2019</cYear> | ||
<unstructured_citation>Moss, R., Zarebski, A. E., Dawson, | ||
P., Franklin, L. J., Birrell, F. A., & McCaw., J. M. (2019). Anatomy | ||
of a seasonal influenza epidemic forecast. Communicable Diseases | ||
Intelligence, 43, 1–14. | ||
https://doi.org/10.33321/cdi.2019.43.7</unstructured_citation> | ||
</citation> | ||
<citation key="Price20"> | ||
<article_title>Early analysis of the Australian COVID-19 | ||
epidemic</article_title> | ||
<author>Price</author> | ||
<journal_title>eLife</journal_title> | ||
<volume>9</volume> | ||
<doi>10.7554/eLife.58785</doi> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Price, D. J., Shearer, F. M., Meehan, | ||
M. T., McBryde, E. S., Moss, R., Golding, N., Conway, E. J., Dawson, P., | ||
Cromer, D., Wood, J., Abbott, S., McVernon, J., & McCaw, J. M. | ||
(2020). Early analysis of the Australian COVID-19 epidemic. eLife, 9, | ||
e58785. https://doi.org/10.7554/eLife.58785</unstructured_citation> | ||
</citation> | ||
<citation key="Shearer20"> | ||
<article_title>Infectious disease pandemic planning and | ||
response: Incorporating decision analysis</article_title> | ||
<author>Shearer</author> | ||
<journal_title>PLOS Medicine</journal_title> | ||
<volume>17</volume> | ||
<doi>10.1371/journal.pmed.1003018</doi> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Shearer, F. M., Moss, R., McVernon, | ||
J., Ross, J. V., & McCaw, J. M. (2020). Infectious disease pandemic | ||
planning and response: Incorporating decision analysis. PLOS Medicine, | ||
17, e1003018. | ||
https://doi.org/10.1371/journal.pmed.1003018</unstructured_citation> | ||
</citation> | ||
<citation key="Moss20"> | ||
<article_title>Coronavirus disease model to inform | ||
transmission-reducing measures and health system preparedness, | ||
Australia</article_title> | ||
<author>Moss</author> | ||
<journal_title>Emerging Infectious Diseases</journal_title> | ||
<issue>12</issue> | ||
<volume>26</volume> | ||
<doi>10.3201/eid2612.202530</doi> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Moss, R., Wood, J., Brown, D., | ||
Shearer, F. M., Black, A. J., Glass, K., Cheng, A. C., McCaw, J. M., | ||
& McVernon, J. (2020). Coronavirus disease model to inform | ||
transmission-reducing measures and health system preparedness, | ||
Australia. Emerging Infectious Diseases, 26(12), 2844–2853. | ||
https://doi.org/10.3201/eid2612.202530</unstructured_citation> | ||
</citation> | ||
<citation key="Moss23"> | ||
<article_title>Forecasting COVID-19 activity in Australia to | ||
support pandemic response: May to October 2020</article_title> | ||
<author>Moss</author> | ||
<journal_title>Scientific Reports</journal_title> | ||
<issue>1</issue> | ||
<volume>13</volume> | ||
<doi>10.1038/s41598-023-35668-6</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Moss, R., Price, D. J., Golding, N., | ||
Dawson, P., McVernon, J., Hyndman, R. J., Shearer, F. M., & McCaw, | ||
J. M. (2023). Forecasting COVID-19 activity in Australia to support | ||
pandemic response: May to October 2020. Scientific Reports, 13(1). | ||
https://doi.org/10.1038/s41598-023-35668-6</unstructured_citation> | ||
</citation> | ||
<citation key="Kitaga96"> | ||
<article_title>Monte Carlo filter and smoother for | ||
non-Gaussian nonlinear state space models</article_title> | ||
<author>Kitagawa</author> | ||
<journal_title>Journal of Computational and Graphical | ||
Statistics</journal_title> | ||
<issue>1</issue> | ||
<volume>5</volume> | ||
<doi>10.1080/10618600.1996.10474692</doi> | ||
<cYear>1996</cYear> | ||
<unstructured_citation>Kitagawa, G. (1996). Monte Carlo | ||
filter and smoother for non-Gaussian nonlinear state space models. | ||
Journal of Computational and Graphical Statistics, 5(1), 1–25. | ||
https://doi.org/10.1080/10618600.1996.10474692</unstructured_citation> | ||
</citation> | ||
<citation key="Doucet01"> | ||
<volume_title>Sequential Monte Carlo methods in | ||
practice</volume_title> | ||
<doi>10.1007/978-1-4757-3437-9</doi> | ||
<isbn>978-1-4419-2887-0</isbn> | ||
<cYear>2001</cYear> | ||
<unstructured_citation>Doucet, A., Freitas, N. de, & | ||
Gordon, N. (Eds.). (2001). Sequential Monte Carlo methods in practice | ||
(1st ed.). Springer. | ||
https://doi.org/10.1007/978-1-4757-3437-9</unstructured_citation> | ||
</citation> | ||
<citation key="Musso01"> | ||
<article_title>Improving regularised particle | ||
filters</article_title> | ||
<author>Musso</author> | ||
<journal_title>Sequential Monte Carlo methods in | ||
practice</journal_title> | ||
<doi>10.1007/978-1-4757-3437-9_12</doi> | ||
<cYear>2001</cYear> | ||
<unstructured_citation>Musso, C., Oudjane, N., & Le | ||
Gland, F. (2001). Improving regularised particle filters. In Sequential | ||
Monte Carlo methods in practice (pp. 247–271). Springer. | ||
https://doi.org/10.1007/978-1-4757-3437-9_12</unstructured_citation> | ||
</citation> | ||
<citation key="Chopin20"> | ||
<volume_title>An introduction to Sequential Monte | ||
Carlo</volume_title> | ||
<author>Chopin</author> | ||
<doi>10.1007/978-3-030-47845-2</doi> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Chopin, N., & Papaspiliopoulos, | ||
O. (2020). An introduction to Sequential Monte Carlo. Springer. | ||
https://doi.org/10.1007/978-3-030-47845-2</unstructured_citation> | ||
</citation> | ||
<citation key="Hyndma21"> | ||
<volume_title>Forecasting: Principles and | ||
practice</volume_title> | ||
<author>Hyndman</author> | ||
<cYear>2021</cYear> | ||
<unstructured_citation>Hyndman, R. J., & Athanasopoulos, | ||
G. (2021). Forecasting: Principles and practice (3rd ed.). OTexts. | ||
https://otexts.com/fpp3</unstructured_citation> | ||
</citation> | ||
<citation key="PyMC"> | ||
<article_title>PyMC: A modern, and comprehensive | ||
probabilistic programming framework in Python</article_title> | ||
<author>Abril-Pla</author> | ||
<journal_title>PeerJ Computer Science</journal_title> | ||
<volume>9</volume> | ||
<doi>10.7717/peerj-cs.1516</doi> | ||
<issn>2376-5992</issn> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Abril-Pla, O., Andreani, V., Carroll, | ||
C., Dong, L., Fonnesbeck, C. J., Kochurov, M., Kumar, R., Lao, J., | ||
Luhmann, C. C., Martin, O. A., Osthege, M., Vieira, R., Wiecki, T., | ||
& Zinkov, R. (2023). PyMC: A modern, and comprehensive probabilistic | ||
programming framework in Python. PeerJ Computer Science, 9, e1516. | ||
https://doi.org/10.7717/peerj-cs.1516</unstructured_citation> | ||
</citation> | ||
<citation key="Pyro"> | ||
<article_title>Pyro: Deep universal probabilistic | ||
programming</article_title> | ||
<author>Bingham</author> | ||
<journal_title>Journal of Machine Learning | ||
Research</journal_title> | ||
<volume>20</volume> | ||
<cYear>2019</cYear> | ||
<unstructured_citation>Bingham, E., Chen, J. P., Jankowiak, | ||
M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P. | ||
A., Horsfall, P., & Goodman, N. D. (2019). Pyro: Deep universal | ||
probabilistic programming. Journal of Machine Learning Research, 20, | ||
28:1–28:6. | ||
http://jmlr.org/papers/v20/18-403.html</unstructured_citation> | ||
</citation> | ||
<citation key="StoneSoup"> | ||
<article_title>Dstl/stone-soup: v1.1 release</article_title> | ||
<author>Hiscocks</author> | ||
<doi>10.5281/zenodo.8308177</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Hiscocks, S., Harrald, O., Barr, J., | ||
Perree, N., Vladimirov, L., Green, R., Rosoman, O., etfrogers-dstl, | ||
idorrington-dstl, Glover, T., Hunter, E., Wright, J., gawebb-dstl, | ||
Harris, M., Fraser, B., spike, Pritchett, H., jjosborne-dstl, Carniglia, | ||
P., … Hiles, J. (2023). Dstl/stone-soup: v1.1 release (Version v1.1). | ||
Zenodo. https://doi.org/10.5281/zenodo.8308177</unstructured_citation> | ||
</citation> | ||
<citation key="FilterPy"> | ||
<article_title>FilterPy - Kalman filters and other optimal | ||
and non-optimal estimation filters in Python</article_title> | ||
<author>Labbe</author> | ||
<journal_title>GitHub repository</journal_title> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Labbe, R. R. (2022). FilterPy - | ||
Kalman filters and other optimal and non-optimal estimation filters in | ||
Python. In GitHub repository. GitHub. | ||
https://github.com/rlabbe/filterpy</unstructured_citation> | ||
</citation> | ||
<citation key="SMCPy"> | ||
<article_title>SMCPy - Sequential Monte Carlo with | ||
Python</article_title> | ||
<author>Leser</author> | ||
<journal_title>GitHub repository</journal_title> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Leser, P., & Wang, M. (2023). | ||
SMCPy - Sequential Monte Carlo with Python. In GitHub repository. | ||
GitHub. https://github.com/nasa/SMCPy</unstructured_citation> | ||
</citation> | ||
</citation_list> | ||
</journal_article> | ||
</journal> | ||
</body> | ||
</doi_batch> |
Oops, something went wrong.