Skip to content

Commit

Permalink
Merge pull request #5385 from openjournals/joss.06170
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored May 25, 2024
2 parents 1230073 + 9e966ac commit a62a14f
Show file tree
Hide file tree
Showing 6 changed files with 959 additions and 0 deletions.
304 changes: 304 additions & 0 deletions joss.06170/10.21105.joss.06170.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,304 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240525T163918-8f47ca3f1bfb4d636fd4ebc16a5e5b6f83c8f33e</doi_batch_id>
<timestamp>20240525163918</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>05</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>97</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>pylattica: a package for prototyping lattice models in
chemistry and materials science</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Max C.</given_name>
<surname>Gallant</surname>
<ORCID>https://orcid.org/0009-0008-4099-6144</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Kristin A.</given_name>
<surname>Persson</surname>
<ORCID>https://orcid.org/0000-0003-2495-5509</ORCID>
</person_name>
</contributors>
<publication_date>
<month>05</month>
<day>25</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6170</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06170</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10815119</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6170</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06170</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06170</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06170.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="sieradzki_perceptive_2013">
<article_title>A perceptive comparison of the cellular
automata and Monte Carlo techniques in application to static
recrystallization modeling in polycrystalline materials</article_title>
<author>Sieradzki</author>
<journal_title>Computational Materials
Science</journal_title>
<volume>67</volume>
<doi>10.1016/j.commatsci.2012.08.047</doi>
<issn>0927-0256</issn>
<cYear>2013</cYear>
<unstructured_citation>Sieradzki, L., &amp; Madej, L.
(2013). A perceptive comparison of the cellular automata and Monte Carlo
techniques in application to static recrystallization modeling in
polycrystalline materials. Computational Materials Science, 67, 156–173.
https://doi.org/10.1016/j.commatsci.2012.08.047</unstructured_citation>
</citation>
<citation key="Morgan2017">
<article_title>Lattice_mc: A python lattice-gas monte carlo
module</article_title>
<author>Morgan</author>
<journal_title>Journal of Open Source
Software</journal_title>
<issue>13</issue>
<volume>2</volume>
<doi>10.21105/joss.00247</doi>
<cYear>2017</cYear>
<unstructured_citation>Morgan, B. J. (2017). Lattice_mc: A
python lattice-gas monte carlo module. Journal of Open Source Software,
2(13), 247. https://doi.org/10.21105/joss.00247</unstructured_citation>
</citation>
<citation key="feistenauer_cellular_automaton_2021">
<article_title>Cellular_automaton</article_title>
<author>Feistenauer</author>
<journal_title>GitLab</journal_title>
<cYear>2021</cYear>
<unstructured_citation>Feistenauer, R. (2021).
Cellular_automaton. In GitLab.
https://gitlab.com/DamKoVosh/cellular_automaton</unstructured_citation>
</citation>
<citation key="antunes_cellpylib_2023">
<article_title>CellPyLib</article_title>
<author>Antunes</author>
<cYear>2023</cYear>
<unstructured_citation>Antunes, L. (2023). CellPyLib.
https://github.com/lantunes/cellpylib</unstructured_citation>
</citation>
<citation key="antunes_netomaton_2019">
<article_title>Netomaton: A Python Library for working with
Network Automata</article_title>
<author>Antunes</author>
<doi>10.5281/ZENODO.3893141</doi>
<cYear>2019</cYear>
<unstructured_citation>Antunes, L. M. (2019). Netomaton: A
Python Library for working with Network Automata. Zenodo.
https://doi.org/10.5281/ZENODO.3893141</unstructured_citation>
</citation>
<citation key="leetmaa_kmclib_2014">
<article_title>KMCLib: A general framework for lattice
kinetic Monte Carlo (KMC) simulations</article_title>
<author>Leetmaa</author>
<journal_title>Computer Physics
Communications</journal_title>
<issue>9</issue>
<volume>185</volume>
<doi>10.1016/j.cpc.2014.04.017</doi>
<issn>0010-4655</issn>
<cYear>2014</cYear>
<unstructured_citation>Leetmaa, M., &amp; Skorodumova, N. V.
(2014). KMCLib: A general framework for lattice kinetic Monte Carlo
(KMC) simulations. Computer Physics Communications, 185(9), 2340–2349.
https://doi.org/10.1016/j.cpc.2014.04.017</unstructured_citation>
</citation>
<citation key="haley_vacancy_2006">
<article_title>Vacancy clustering and diffusion in silicon:
Kinetic lattice Monte Carlo simulations</article_title>
<author>Haley</author>
<journal_title>Physical Review B</journal_title>
<issue>4</issue>
<volume>74</volume>
<doi>10.1103/PhysRevB.74.045217</doi>
<cYear>2006</cYear>
<unstructured_citation>Haley, B. P., Beardmore, K. M., &amp;
Grønbech-Jensen, N. (2006). Vacancy clustering and diffusion in silicon:
Kinetic lattice Monte Carlo simulations. Physical Review B, 74(4),
045217.
https://doi.org/10.1103/PhysRevB.74.045217</unstructured_citation>
</citation>
<citation key="bays_introduction_2010">
<article_title>Introduction to Cellular Automata
and Conway’s Game of Life</article_title>
<author>Bays</author>
<journal_title>Game of Life Cellular
Automata</journal_title>
<doi>10.1007/978-1-84996-217-9_1</doi>
<isbn>978-1-84996-217-9</isbn>
<cYear>2010</cYear>
<unstructured_citation>Bays, C. (2010). Introduction to
Cellular Automata and Conway’s Game of Life. In A. Adamatzky (Ed.), Game
of Life Cellular Automata (pp. 1–7). Springer.
https://doi.org/10.1007/978-1-84996-217-9_1</unstructured_citation>
</citation>
<citation key="ong_python_2013">
<article_title>Python Materials Genomics (pymatgen): A
robust, open-source python library for materials
analysis</article_title>
<author>Ong</author>
<journal_title>Computational Materials
Science</journal_title>
<volume>68</volume>
<doi>10.1016/j.commatsci.2012.10.028</doi>
<issn>0927-0256</issn>
<cYear>2013</cYear>
<unstructured_citation>Ong, S. P., Richards, W. D., Jain,
A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier, V. L.,
Persson, K. A., &amp; Ceder, G. (2013). Python Materials Genomics
(pymatgen): A robust, open-source python library for materials analysis.
Computational Materials Science, 68, 314–319.
https://doi.org/10.1016/j.commatsci.2012.10.028</unstructured_citation>
</citation>
<citation key="packard_two-dimensional_1985">
<article_title>Two-dimensional cellular
automata</article_title>
<author>Packard</author>
<journal_title>Journal of Statistical
Physics</journal_title>
<issue>5</issue>
<volume>38</volume>
<doi>10.1007/BF01010423</doi>
<issn>1572-9613</issn>
<cYear>1985</cYear>
<unstructured_citation>Packard, N. H., &amp; Wolfram, S.
(1985). Two-dimensional cellular automata. Journal of Statistical
Physics, 38(5), 901–946.
https://doi.org/10.1007/BF01010423</unstructured_citation>
</citation>
<citation key="fates_guided_2013">
<article_title>A Guided Tour of Asynchronous Cellular
Automata</article_title>
<author>Fatès</author>
<journal_title>Cellular Automata and Discrete Complex
Systems</journal_title>
<doi>10.1007/978-3-642-40867-0_2</doi>
<isbn>978-3-642-40867-0</isbn>
<cYear>2013</cYear>
<unstructured_citation>Fatès, N. (2013). A Guided Tour of
Asynchronous Cellular Automata. In J. Kari, M. Kutrib, &amp; A. Malcher
(Eds.), Cellular Automata and Discrete Complex Systems (pp. 15–30).
Springer.
https://doi.org/10.1007/978-3-642-40867-0_2</unstructured_citation>
</citation>
<citation key="boghosian_lattice_1999">
<article_title>Lattice gases and cellular
automata</article_title>
<author>Boghosian</author>
<journal_title>Future Generation Computer
Systems</journal_title>
<issue>2</issue>
<volume>16</volume>
<doi>10.1016/S0167-739X(99)00045-X</doi>
<issn>0167-739X</issn>
<cYear>1999</cYear>
<unstructured_citation>Boghosian, B. M. (1999). Lattice
gases and cellular automata. Future Generation Computer Systems, 16(2),
171–185.
https://doi.org/10.1016/S0167-739X(99)00045-X</unstructured_citation>
</citation>
<citation key="andersen_practical_2019">
<article_title>A Practical Guide to Surface Kinetic Monte
Carlo Simulations</article_title>
<author>Andersen</author>
<journal_title>Frontiers in Chemistry</journal_title>
<volume>7</volume>
<doi>10.3389/fchem.2019.00202</doi>
<issn>2296-2646</issn>
<cYear>2019</cYear>
<unstructured_citation>Andersen, M., Panosetti, C., &amp;
Reuter, K. (2019). A Practical Guide to Surface Kinetic Monte Carlo
Simulations. Frontiers in Chemistry, 7.
https://doi.org/10.3389/fchem.2019.00202</unstructured_citation>
</citation>
<citation key="gardner_mathematical_1970">
<article_title>Mathematical Games</article_title>
<author>Gardner</author>
<journal_title>Scientific American</journal_title>
<issue>4</issue>
<volume>223</volume>
<issn>0036-8733</issn>
<cYear>1970</cYear>
<unstructured_citation>Gardner, M. (1970). Mathematical
Games. Scientific American, 223(4), 120–123.
https://www.jstor.org/stable/24927642</unstructured_citation>
</citation>
<citation key="raabe_cellular_2002">
<article_title>Cellular Automata in Materials Science with
Particular Reference to Recrystallization Simulation</article_title>
<author>Raabe</author>
<journal_title>Annual Review of Materials
Research</journal_title>
<issue>1</issue>
<volume>32</volume>
<doi>10.1146/annurev.matsci.32.090601.152855</doi>
<cYear>2002</cYear>
<unstructured_citation>Raabe, D. (2002). Cellular Automata
in Materials Science with Particular Reference to Recrystallization
Simulation. Annual Review of Materials Research, 32(1), 53–76.
https://doi.org/10.1146/annurev.matsci.32.090601.152855</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06170/10.21105.joss.06170.pdf
Binary file not shown.
Loading

0 comments on commit a62a14f

Please sign in to comment.