Skip to content

Commit

Permalink
Merge pull request #4890 from openjournals/joss.05052
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jan 9, 2024
2 parents 2b832f4 + 82b9ba3 commit 9e5eb6a
Show file tree
Hide file tree
Showing 3 changed files with 888 additions and 0 deletions.
325 changes: 325 additions & 0 deletions joss.05052/10.21105.joss.05052.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,325 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240109T154115-a7950d0954479c95ff29003eb332e0679d303835</doi_batch_id>
<timestamp>20240109154115</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>01</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>93</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>Scarlet: Scalable Anytime Algorithms for Learning
Fragments of Linear Temporal Logic</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Ritam</given_name>
<surname>Raha</surname>
<ORCID>https://orcid.org/0000-0003-1467-1182</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Rajarshi</given_name>
<surname>Roy</surname>
<ORCID>https://orcid.org/0000-0002-0202-1169</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Nathanaël</given_name>
<surname>Fijalkow</surname>
<ORCID>https://orcid.org/0000-0002-6576-4680</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Daniel</given_name>
<surname>Neider</surname>
<ORCID>https://orcid.org/0000-0001-9276-6342</ORCID>
</person_name>
</contributors>
<publication_date>
<month>01</month>
<day>09</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>5052</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05052</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10419514</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5052</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05052</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05052</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05052.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Li13d">
<article_title>Specification mining: New formalisms,
algorithms and applications</article_title>
<author>Li</author>
<cYear>2013</cYear>
<unstructured_citation>Li, W. (2013). Specification mining:
New formalisms, algorithms and applications [PhD thesis, University of
California, Berkeley, USA].
http://www.escholarship.org/uc/item/4027r49r</unstructured_citation>
</citation>
<citation key="GiannakopoulouP20a">
<article_title>Formal requirements elicitation with
FRET</article_title>
<author>Giannakopoulou</author>
<journal_title>International conference on requirements
engineering: Foundation for software quality, REFSQ</journal_title>
<cYear>2020</cYear>
<unstructured_citation>Giannakopoulou, D., Pressburger, T.,
Mavridou, A., Rhein, J., Schumann, J., &amp; Shi, N. (2020). Formal
requirements elicitation with FRET. International Conference on
Requirements Engineering: Foundation for Software Quality, REFSQ.
http://ceur-ws.org/Vol-2584/PT-paper4.pdf</unstructured_citation>
</citation>
<citation key="GhoshELLSS16">
<article_title>ARSENAL: Automatic requirements specification
extraction from natural language</article_title>
<author>Ghosh</author>
<journal_title>NASA formal methods, NFM</journal_title>
<doi>10.1007/978-3-319-40648-0_4</doi>
<cYear>2016</cYear>
<unstructured_citation>Ghosh, S., Elenius, D., Li, W.,
Lincoln, P., Shankar, N., &amp; Steiner, W. (2016). ARSENAL: Automatic
requirements specification extraction from natural language. NASA Formal
Methods, NFM.
https://doi.org/10.1007/978-3-319-40648-0_4</unstructured_citation>
</citation>
<citation key="FijalkowLagarde21">
<article_title>The complexity of learning linear temporal
formulas from examples</article_title>
<author>Fijalkow</author>
<journal_title>International conference on grammatical
inference, ICGI</journal_title>
<cYear>2021</cYear>
<unstructured_citation>Fijalkow, N., &amp; Lagarde, G.
(2021). The complexity of learning linear temporal formulas from
examples. International Conference on Grammatical Inference, ICGI.
https://proceedings.mlr.press/v153/fijalkow21a.html</unstructured_citation>
</citation>
<citation key="NeiderGavran18">
<article_title>Learning linear temporal
properties</article_title>
<author>Neider</author>
<journal_title>Formal methods in computer aided design,
FMCAD</journal_title>
<doi>10.23919/FMCAD.2018.8603016</doi>
<cYear>2018</cYear>
<unstructured_citation>Neider, D., &amp; Gavran, I. (2018).
Learning linear temporal properties. Formal Methods in Computer Aided
Design, FMCAD.
https://doi.org/10.23919/FMCAD.2018.8603016</unstructured_citation>
</citation>
<citation key="ChouOB20">
<article_title>Explaining multi-stage tasks by learning
temporal logic formulas from suboptimal demonstrations</article_title>
<author>Chou</author>
<journal_title>Robotics: Science and systems</journal_title>
<doi>10.15607/RSS.2020.XVI.097</doi>
<cYear>2020</cYear>
<unstructured_citation>Chou, G., Ozay, N., &amp; Berenson,
D. (2020). Explaining multi-stage tasks by learning temporal logic
formulas from suboptimal demonstrations. Robotics: Science and Systems.
https://doi.org/10.15607/RSS.2020.XVI.097</unstructured_citation>
</citation>
<citation key="RoyFismanNeider20">
<article_title>Learning interpretable models in the property
specification language</article_title>
<author>Roy</author>
<journal_title>International joint conference on artificial
intelligence, IJCAI</journal_title>
<doi>10.24963/ijcai.2020/306</doi>
<cYear>2020</cYear>
<unstructured_citation>Roy, R., Fisman, D., &amp; Neider, D.
(2020). Learning interpretable models in the property specification
language. International Joint Conference on Artificial Intelligence,
IJCAI, 2213–2219.
https://doi.org/10.24963/ijcai.2020/306</unstructured_citation>
</citation>
<citation key="EhlersGavranNeider20">
<article_title>Learning properties in LTL \cap ACTL from
positive examples only</article_title>
<author>Ehlers</author>
<journal_title>Formal methods in computer aided design,
FMCAD</journal_title>
<doi>10.34727/2020/isbn.978-3-85448-042-6_17</doi>
<cYear>2020</cYear>
<unstructured_citation>Ehlers, R., Gavran, I., &amp; Neider,
D. (2020). Learning properties in LTL \cap ACTL from positive examples
only. Formal Methods in Computer Aided Design, FMCAD, 104–112.
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_17</unstructured_citation>
</citation>
<citation key="ijcai2019-0776">
<article_title>Bayesian inference of linear temporal logic
specifications for contrastive explanations</article_title>
<author>Kim</author>
<journal_title>International joint conference on artificial
intelligence, IJCAI</journal_title>
<doi>10.24963/ijcai.2019/776</doi>
<cYear>2019</cYear>
<unstructured_citation>Kim, J., Muise, C., Shah, A.,
Agarwal, S., &amp; Shah, J. (2019). Bayesian inference of linear
temporal logic specifications for contrastive explanations.
International Joint Conference on Artificial Intelligence, IJCAI.
https://doi.org/10.24963/ijcai.2019/776</unstructured_citation>
</citation>
<citation key="Camacho_McIlraith_2019">
<article_title>Learning interpretable models expressed in
linear temporal logic</article_title>
<author>Camacho</author>
<journal_title>International Conference on Automated
Planning and Scheduling, ICAPS</journal_title>
<doi>10.1609/icaps.v29i1.3529</doi>
<cYear>2019</cYear>
<unstructured_citation>Camacho, A., &amp; McIlraith, S. A.
(2019). Learning interpretable models expressed in linear temporal
logic. International Conference on Automated Planning and Scheduling,
ICAPS. https://doi.org/10.1609/icaps.v29i1.3529</unstructured_citation>
</citation>
<citation key="LPB15">
<article_title>General LTL specification
mining</article_title>
<author>Lemieux</author>
<journal_title>International conference on automated
software engineering, ASE</journal_title>
<doi>10.1109/ASE.2015.71</doi>
<cYear>2015</cYear>
<unstructured_citation>Lemieux, C., Park, D., &amp;
Beschastnikh, I. (2015). General LTL specification mining. International
Conference on Automated Software Engineering, ASE.
https://doi.org/10.1109/ASE.2015.71</unstructured_citation>
</citation>
<citation key="BoVaPeBe-HSCC-2016">
<article_title>A Decision Tree Approach to Data
Classification using Signal Temporal Logic</article_title>
<author>Bombara</author>
<doi>10.1145/2883817.2883843</doi>
<cYear>2016</cYear>
<unstructured_citation>Bombara, G., Vasile, C. I., Penedo
Alvarez, F., Yasuoka, H., &amp; Belta, C. (2016). A Decision Tree
Approach to Data Classification using Signal Temporal Logic.
https://doi.org/10.1145/2883817.2883843</unstructured_citation>
</citation>
<citation key="ArifLERCT20">
<article_title>SYSLITE: Syntax-guided synthesis of PLTL
formulas from finite traces</article_title>
<author>Arif</author>
<journal_title>Formal methods in computer aided design,
FMCAD</journal_title>
<doi>10.34727/2020/ISBN.978-3-85448-042-6_16</doi>
<cYear>2020</cYear>
<unstructured_citation>Arif, M. F., Larraz, D., Echeverria,
M., Reynolds, A., Chowdhury, O., &amp; Tinelli, C. (2020). SYSLITE:
Syntax-guided synthesis of PLTL formulas from finite traces. Formal
Methods in Computer Aided Design, FMCAD.
https://doi.org/10.34727/2020/ISBN.978-3-85448-042-6_16</unstructured_citation>
</citation>
<citation key="ReynoldsBNBT19">
<article_title>cvc4sy: Smart and fast term enumeration for
syntax-guided synthesis</article_title>
<author>Reynolds</author>
<journal_title>Computer-aided verification,
CAV</journal_title>
<doi>10.1007/978-3-030-25543-5_5</doi>
<cYear>2019</cYear>
<unstructured_citation>Reynolds, A., Barbosa, H., Nötzli,
A., Barrett, C. W., &amp; Tinelli, C. (2019). cvc4sy: Smart and fast
term enumeration for syntax-guided synthesis. Computer-Aided
Verification, CAV.
https://doi.org/10.1007/978-3-030-25543-5_5</unstructured_citation>
</citation>
<citation key="RahaRFN22">
<article_title>Scalable anytime algorithms for learning
fragments of linear temporal logic</article_title>
<author>Raha</author>
<journal_title>TACAS (1)</journal_title>
<volume>13243</volume>
<doi>10.1007/978-3-030-99524-9_14</doi>
<cYear>2022</cYear>
<unstructured_citation>Raha, R., Roy, R., Fijalkow, N.,
&amp; Neider, D. (2022). Scalable anytime algorithms for learning
fragments of linear temporal logic. TACAS (1), 13243, 263–280.
https://doi.org/10.1007/978-3-030-99524-9_14</unstructured_citation>
</citation>
<citation key="abs-2310-13778">
<article_title>Inferring properties in computation tree
logic</article_title>
<author>Roy</author>
<journal_title>CoRR</journal_title>
<volume>abs/2310.13778</volume>
<doi>10.48550/ARXIV.2310.13778</doi>
<cYear>2023</cYear>
<unstructured_citation>Roy, R., &amp; Neider, D. (2023).
Inferring properties in computation tree logic. CoRR, abs/2310.13778.
https://doi.org/10.48550/ARXIV.2310.13778</unstructured_citation>
</citation>
<citation key="abs-2310-17410">
<article_title>Synthesizing efficiently monitorable formulas
in metric temporal logic</article_title>
<author>Raha</author>
<journal_title>CoRR</journal_title>
<volume>abs/2310.17410</volume>
<doi>10.48550/ARXIV.2310.17410</doi>
<cYear>2023</cYear>
<unstructured_citation>Raha, R., Roy, R., Fijalkow, N.,
Neider, D., &amp; Pérez, G. A. (2023). Synthesizing efficiently
monitorable formulas in metric temporal logic. CoRR, abs/2310.17410.
https://doi.org/10.48550/ARXIV.2310.17410</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 9e5eb6a

Please sign in to comment.