Skip to content

Commit

Permalink
Creating 10.21105.joss.06028.jats
Browse files Browse the repository at this point in the history
  • Loading branch information
editorialbot committed Jul 15, 2024
1 parent 7620283 commit 8426efd
Showing 1 changed file with 345 additions and 0 deletions.
345 changes: 345 additions & 0 deletions joss.06028/paper.jats/10.21105.joss.06028.jats
Original file line number Diff line number Diff line change
@@ -0,0 +1,345 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.2 20190208//EN"
"JATS-publishing1.dtd">
<article xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" dtd-version="1.2" article-type="other">
<front>
<journal-meta>
<journal-id></journal-id>
<journal-title-group>
<journal-title>Journal of Open Source Software</journal-title>
<abbrev-journal-title>JOSS</abbrev-journal-title>
</journal-title-group>
<issn publication-format="electronic">2475-9066</issn>
<publisher>
<publisher-name>Open Journals</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="publisher-id">6028</article-id>
<article-id pub-id-type="doi">10.21105/joss.06028</article-id>
<title-group>
<article-title>Scanbot: An STM Automation Bot</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<contrib-id contrib-id-type="orcid">https://orcid.org/0000-0003-3990-8852</contrib-id>
<name>
<surname>Ceddia</surname>
<given-names>Julian</given-names>
</name>
<xref ref-type="aff" rid="aff-1"/>
<xref ref-type="aff" rid="aff-2"/>
<xref ref-type="corresp" rid="cor-1"><sup>*</sup></xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">https://orcid.org/0000-0003-2282-8223</contrib-id>
<name>
<surname>Hellerstedt</surname>
<given-names>Jack</given-names>
</name>
<xref ref-type="aff" rid="aff-1"/>
<xref ref-type="aff" rid="aff-2"/>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">https://orcid.org/0000-0002-5157-7737</contrib-id>
<name>
<surname>Lowe</surname>
<given-names>Benjamin</given-names>
</name>
<xref ref-type="aff" rid="aff-1"/>
<xref ref-type="aff" rid="aff-2"/>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">https://orcid.org/0000-0003-1140-8485</contrib-id>
<name>
<surname>Schiffrin</surname>
<given-names>Agustin</given-names>
</name>
<xref ref-type="aff" rid="aff-1"/>
<xref ref-type="aff" rid="aff-2"/>
</contrib>
<aff id="aff-1">
<institution-wrap>
<institution>School of Physics &amp; Astronomy, Monash University,
Clayton, Victoria 3800, Australia</institution>
</institution-wrap>
</aff>
<aff id="aff-2">
<institution-wrap>
<institution>ARC Centre of Excellence in Future Low-Energy Electronics
Technologies, Monash University, Clayton, Victoria 3800,
Australia</institution>
</institution-wrap>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor-1">* E-mail: <email></email></corresp>
</author-notes>
<pub-date date-type="pub" publication-format="electronic" iso-8601-date="2023-03-13">
<day>13</day>
<month>3</month>
<year>2023</year>
</pub-date>
<volume>9</volume>
<issue>99</issue>
<fpage>6028</fpage>
<permissions>
<copyright-statement>Authors of papers retain copyright and release the
work under a Creative Commons Attribution 4.0 International License (CC
BY 4.0)</copyright-statement>
<copyright-year>2022</copyright-year>
<copyright-holder>The article authors</copyright-holder>
<license license-type="open-access" xlink:href="https://creativecommons.org/licenses/by/4.0/">
<license-p>Authors of papers retain copyright and release the work under
a Creative Commons Attribution 4.0 International License (CC BY
4.0)</license-p>
</license>
</permissions>
<kwd-group kwd-group-type="author">
<kwd>Python</kwd>
<kwd>Scanning Tunneling Microscopy</kwd>
<kwd>STM</kwd>
<kwd>Automation</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="summary">
<title>Summary</title>
<p>Scanning Tunnelling Microscopes (STM) are capable of capturing
images of surfaces with atomic-scale resolution. This is achieved by
scanning an atomically sharp probe across the surface of the sample
while monitoring an electric current. However, the quality of STM data
relies heavily on the atomic-scale geometry and composition of the
scanning probe apex, as well as the roughness and cleanliness of the
scanned region. For instance, blunt tips result in blurry images while
contaminated tips can lead to noisy images due to interactions with
the sample. As a result, optimal STM data acquisition commonly
requires time-consuming tasks such as probe conditioning—i.e.,
sharpening via “tip-shaping”, where the apex of the probe can be
refined by poking it into a clean metal surface—and identification of
areas of interest of the sample. Moreover, the quality of the probe
can vary during a scan, especially when scanning over debris or
excessively rough areas, necessitating additional tip-shaping.</p>
<p>Here, we present Scanbot, a program that fully automates common STM
data acquisition techniques, as well as tip-shaping and sample
surveying. Scanbot relies on a dual sample holder (DSH;
<xref alt="[fig:1]" rid="figU003A1">[fig:1]</xref>), where a sample of
interest is mounted alongside a clean reference metal surface, which
is ideal for tip preparation. Scanbot is able to analyse STM images
and identify when the probe requires conditioning, subsequently moving
it from the sample of interest to the clean reference metal, where it
will prepare a scanning probe capable of obtaining high-quality STM
images. This is accomplished using built-in piezoceramic scanners to
maneuver the STM tip while tracking its position through a camera
feed; <xref alt="[fig:1]" rid="figU003A1">[fig:1]</xref>b). Once
Scanbot determines that the probe has been conditioned adequately, it
moves the tip back to the sample of interest and STM data acquisition
resumes.</p>
<fig>
<caption><p>Tracking and maneuvering the STM probe above the dual
sample holder (DSH). <bold>a)</bold> Schematic of the STM tip over
the dual sample holder setup. A sample of interest is mounted next
to a clean reference metal substrate (e.g. Au(111)) which is ideal
for tip shaping. <bold>b)</bold> Image from the camera feed used by
Scanbot to track and maneuver the STM probe automatically from the
sample to the clean reference metal, where it can be refined. The
red (green) marker indicates the probe apex position (target
position, respectively). See Scanbot
<ext-link ext-link-type="uri" xlink:href="https://new-horizons-spm.github.io/scanbot/automation/">documentation</ext-link>
for a video example.
<styled-content id="figU003A1"></styled-content></p></caption>
<graphic mimetype="image" mime-subtype="png" xlink:href="TipTracking.png" />
</fig>
<p><xref alt="[fig:2]" rid="figU003A2">[fig:2]</xref> demonstrates
Scanbot’s ability to recondition a ‘bad’ tip on a clean reference
metal surface. Scanbot can gently impinge the scanning probe apex onto
a clean, flat region of the metal surface, which results in an imprint
associated with the geometry of the tip. This imprint can then be
scanned, and the resulting image is similar to the auto-correlation
function of the tip’s apex. The quality of the tip can be assessed by
measuring the area and circularity of the imprint. If the imprint does
not meet the desired criteria, a more aggressive tip shaping action is
carried out, and the process is repeated until a high-quality tip is
achieved.</p>
<fig>
<caption><p>Successive STM images (left to right) of the tip’s
imprint on a clean metal surface, each following a more agressive
tip-shaping action in a different location. The area and circularity
of each imprint reflects the geometry of the apex of the scanning
probe. Thus the process is repeated until a desired geometry is
achieved.<styled-content id="figU003A2"></styled-content></p></caption>
<graphic mimetype="image" mime-subtype="png" xlink:href="AutoTipShaping.png" />
</fig>
</sec>
<sec id="statement-of-need">
<title>Statement of need</title>
<p>To reduce the time-intensive nature of STM experiments, various
innovative solutions have been implemented to automate specific tasks.
For instance, Wang et al. created a Python package that automates
probe conditioning for Scanning Tunneling Spectroscopy
(<xref alt="Wang et al., 2021" rid="ref-Wang_2021" ref-type="bibr">Wang
et al., 2021</xref>). However, this package still requires manual
preparation of the tip such that it can acquire clean images. Some
researchers have employed the use of machine learning algorithms to
analyse acquired images and determine when a probe needs refining
(<xref alt="Gordon et al., 2020" rid="ref-Gordon_2020" ref-type="bibr">Gordon
et al., 2020</xref>;
<xref alt="Rashidi &amp; Wolkow, 2018" rid="ref-Rashidi_2018" ref-type="bibr">Rashidi
&amp; Wolkow, 2018</xref>), then Reinforcement Learning (RL) agents
can condition the probe accordingly
(<xref alt="Krull et al., 2020" rid="ref-Schiffrin_2020" ref-type="bibr">Krull
et al., 2020</xref>). Although these approaches have significantly
advanced automation in STM experiments, they are often tailored to
specific surfaces and STM equipment, making it challenging to transfer
them directly to other labs studying different kinds of samples or
working with different STM systems.</p>
<p>To overcome these limitations, we have developed Scanbot, a Python
robot that is compatible with a broader range of STMs, specifically
those compatible with the Nanonis V5 software
(<xref alt="Ceddia et al., 2022" rid="ref-Ceddia_2022" ref-type="bibr">Ceddia
et al., 2022</xref>;
<xref alt="Specs-GmBH, 2015" rid="ref-Nanonis_2015" ref-type="bibr">Specs-GmBH,
2015</xref>). Additionally, our package incorporates Scanbot’s
distinctive approach to tip shaping, which involves monitoring the
tip’s motion above a dual sample holder. This method is particularly
beneficial in experiments where the sample’s properties might make it
challenging to achieve a high-quality scanning probe without needing
to manually switch out the sample for a clean metal on which the tip
can be prepared.</p>
<p>Scanbot has been developed in a modular fashion, which means its
functionality can easily be expanded or improved through contributions
from the open-source community. Furthermore, through the use of
<ext-link ext-link-type="uri" xlink:href="https://new-horizons-spm.github.io/scanbot/hooks/">hooks</ext-link>,
users can customise or replace key funcionalities that are system- or
lab-specific, without rewriting Scanbot’s source code. This has the
advantage of being able to update Scanbot to the latest version
without losing customised code. Such hooks can also be used to improve
Scanbot’s existing functionality or test potential new features. For
instance, Scanbot’s algorithmic approach to automated tip shaping
might benefit the integration of an RL agent. This could be achieved
by leveraging the hook
<ext-link ext-link-type="uri" xlink:href="https://new-horizons-spm.github.io/scanbot/hooks/#hk_tipshape">hk_tipShape</ext-link>,
where important parameters related to tip shaping can be adjusted
based on images of the tip’s imprint. Complete documentation for
Scanbot, including how such hooks can be leveraged, can be found at
<ext-link ext-link-type="uri" xlink:href="https://new-horizons-spm.github.io/scanbot">https://new-horizons-spm.github.io/scanbot</ext-link>.</p>
</sec>
<sec id="acknowledgements">
<title>Acknowledgements</title>
<p>A.S. acknowledges funding support from the ARC Future Fellowship
scheme (FT150100426). J.C., B.L., and J.H. acknowledge funding support
from the Australian Research Council (ARC) Centre of Excellence in
Future Low-Energy Electronics Technologies (CE170100039). J.C., and
B.L. are supported through an Australian Government Research Training
Program (RTP) Scholarship.</p>
</sec>
</body>
<back>
<ref-list>
<title></title>
<ref id="ref-Gordon_2020">
<element-citation publication-type="article-journal">
<person-group person-group-type="author">
<name><surname>Gordon</surname><given-names>Oliver M</given-names></name>
<name><surname>Junqueira</surname><given-names>Filipe L Q</given-names></name>
<name><surname>Moriarty</surname><given-names>Philip J</given-names></name>
</person-group>
<article-title>Embedding human heuristics in machine-learning-enabled probe microscopy</article-title>
<source>Machine Learning: Science and Technology</source>
<publisher-name>IOP Publishing</publisher-name>
<year iso-8601-date="2020-02">2020</year><month>02</month>
<volume>1</volume>
<issue>1</issue>
<uri>https://dx.doi.org/10.1088/2632-2153/ab42ec</uri>
<pub-id pub-id-type="doi">10.1088/2632-2153/ab42ec</pub-id>
<fpage>015001</fpage>
<lpage></lpage>
</element-citation>
</ref>
<ref id="ref-Wang_2021">
<element-citation publication-type="article-journal">
<person-group person-group-type="author">
<name><surname>Wang</surname><given-names>Shenkai</given-names></name>
<name><surname>Zhu</surname><given-names>Junmian</given-names></name>
<name><surname>Blackwell</surname><given-names>Raymond</given-names></name>
<name><surname>Fischer</surname><given-names>Felix R.</given-names></name>
</person-group>
<article-title>Automated tip conditioning for scanning tunneling spectroscopy</article-title>
<source>The Journal of Physical Chemistry A</source>
<year iso-8601-date="2021">2021</year>
<volume>125</volume>
<issue>6</issue>
<uri>
https://doi.org/10.1021/acs.jpca.0c10731

</uri>
<pub-id pub-id-type="doi">10.1021/acs.jpca.0c10731</pub-id>
<fpage>1384</fpage>
<lpage>1390</lpage>
</element-citation>
</ref>
<ref id="ref-Schiffrin_2020">
<element-citation publication-type="article-journal">
<person-group person-group-type="author">
<name><surname>Krull</surname><given-names>A.</given-names></name>
<name><surname>Hirsch</surname><given-names>P.</given-names></name>
<name><surname>Rother</surname><given-names>C.</given-names></name>
<name><surname>Schiffrin</surname><given-names>A.</given-names></name>
</person-group>
<article-title>Artificial-intelligence-driven scanning probe microscopy</article-title>
<source>Communications Physics</source>
<year iso-8601-date="2020">2020</year>
<volume>3</volume>
<issue>1</issue>
<uri>https://doi.org/10.1038/s42005-020-0317-3</uri>
<pub-id pub-id-type="doi">10.1038/s42005-020-0317-3</pub-id>
</element-citation>
</ref>
<ref id="ref-Ceddia_2022">
<element-citation publication-type="software">
<person-group person-group-type="author">
<name><surname>Ceddia</surname><given-names>Julian</given-names></name>
<name><surname>jhellerstedt</surname></name>
<name><surname>benlowe1</surname></name>
</person-group>
<article-title>New-horizons-SPM/nanonisTCP: nanonisTCP v1.0.0</article-title>
<publisher-name>Zenodo</publisher-name>
<year iso-8601-date="2022-12">2022</year><month>12</month>
<uri>https://doi.org/10.5281/zenodo.7402665</uri>
<pub-id pub-id-type="doi">10.5281/zenodo.7402665</pub-id>
</element-citation>
</ref>
<ref id="ref-Rashidi_2018">
<element-citation publication-type="article-journal">
<person-group person-group-type="author">
<name><surname>Rashidi</surname><given-names>Mohammad</given-names></name>
<name><surname>Wolkow</surname><given-names>Robert A.</given-names></name>
</person-group>
<article-title>Autonomous scanning probe microscopy in situ tip conditioning through machine learning</article-title>
<source>ACS Nano</source>
<year iso-8601-date="2018">2018</year>
<volume>12</volume>
<issue>6</issue>
<uri>
https://doi.org/10.1021/acsnano.8b02208

</uri>
<pub-id pub-id-type="doi">10.1021/acsnano.8b02208</pub-id>
<fpage>5185</fpage>
<lpage>5189</lpage>
</element-citation>
</ref>
<ref id="ref-Nanonis_2015">
<element-citation publication-type="webpage">
<person-group person-group-type="author">
<name><surname>Specs-GmBH</surname></name>
</person-group>
<article-title>Mimea nanonis</article-title>
<year iso-8601-date="2015">2015</year>
<uri>https://www.specs-group.com/nanonis/products/mimea/</uri>
</element-citation>
</ref>
</ref-list>
</back>
</article>

0 comments on commit 8426efd

Please sign in to comment.