Skip to content

Commit

Permalink
Merge pull request #4913 from openjournals/joss.05982
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jan 16, 2024
2 parents 7856228 + dfc6915 commit 82ea814
Show file tree
Hide file tree
Showing 3 changed files with 746 additions and 0 deletions.
281 changes: 281 additions & 0 deletions joss.05982/10.21105.joss.05982.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,281 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240116T140635-af8cb7de35106f9d0197ba7ea207bf1a38334723</doi_batch_id>
<timestamp>20240116140635</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>01</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>93</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>Aletheia: an open-source toolbox for
steganalysis</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Daniel</given_name>
<surname>Lerch-Hostalot</surname>
<ORCID>https://orcid.org/0000-0003-2602-672X</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>David</given_name>
<surname>Megías</surname>
<ORCID>https://orcid.org/0000-0002-0507-7731</ORCID>
</person_name>
</contributors>
<publication_date>
<month>01</month>
<day>16</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>5982</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05982</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10497963</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5982</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05982</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05982</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05982.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Boroumand:2019:SRNet">
<article_title>Deep residual network for steganalysis of
digital images</article_title>
<author>Boroumand</author>
<journal_title>IEEE Transactions on Information Forensics
and Security</journal_title>
<issue>5</issue>
<volume>14</volume>
<doi>10.1109/TIFS.2018.2871749</doi>
<cYear>2019</cYear>
<unstructured_citation>Boroumand, M., Chen, M., &amp;
Fridrich, J. (2019). Deep residual network for steganalysis of digital
images. IEEE Transactions on Information Forensics and Security, 14(5),
1181–1193.
https://doi.org/10.1109/TIFS.2018.2871749</unstructured_citation>
</citation>
<citation key="Fridrich:2007:nsF5">
<article_title>Statistically undetectable JPEG
steganography: Dead ends challenges, and opportunities</article_title>
<author>Fridrich</author>
<journal_title>Proceedings of the 9th workshop on multimedia
&amp; security</journal_title>
<doi>10.1145/1288869.1288872</doi>
<isbn>9781595938572</isbn>
<cYear>2007</cYear>
<unstructured_citation>Fridrich, J., Pevný, T., &amp;
Kodovský, J. (2007). Statistically undetectable JPEG steganography: Dead
ends challenges, and opportunities. Proceedings of the 9th Workshop on
Multimedia &amp; Security, 3--14.
https://doi.org/10.1145/1288869.1288872</unstructured_citation>
</citation>
<citation key="Guo:2014:UED">
<article_title>Uniform embedding for efficient JPEG
steganography</article_title>
<author>Guo</author>
<journal_title>IEEE Transactions on Information Forensics
and Security</journal_title>
<issue>5</issue>
<volume>9</volume>
<doi>10.1109/TIFS.2014.2312817</doi>
<cYear>2014</cYear>
<unstructured_citation>Guo, L., Ni, J., &amp; Shi, Y. Q.
(2014). Uniform embedding for efficient JPEG steganography. IEEE
Transactions on Information Forensics and Security, 9(5), 814–825.
https://doi.org/10.1109/TIFS.2014.2312817</unstructured_citation>
</citation>
<citation key="Hetzl:2005:steghide">
<article_title>A graph–theoretic approach to
steganography</article_title>
<author>Hetzl</author>
<journal_title>Communications and multimedia
security</journal_title>
<doi>10.1007/11552055_12</doi>
<isbn>978-3-540-31978-8</isbn>
<cYear>2005</cYear>
<unstructured_citation>Hetzl, S., &amp; Mutzel, P. (2005). A
graph–theoretic approach to steganography. In J. Dittmann, S.
Katzenbeisser, &amp; A. Uhl (Eds.), Communications and multimedia
security (pp. 119–128). Springer Berlin Heidelberg.
https://doi.org/10.1007/11552055_12</unstructured_citation>
</citation>
<citation key="Holub:2014:uniward">
<article_title>Universal distortion function for
steganography in an arbitrary domain</article_title>
<author>Holub</author>
<journal_title>EURASIP Journal on Information
Security</journal_title>
<issue>1</issue>
<volume>2014</volume>
<doi>10.1186/1687-417X-2014-1</doi>
<cYear>2014</cYear>
<unstructured_citation>Holub, V., Fridrich, J., &amp;
Denemark, T. (2014). Universal distortion function for steganography in
an arbitrary domain. EURASIP Journal on Information Security, 2014(1),
1–13. https://doi.org/10.1186/1687-417X-2014-1</unstructured_citation>
</citation>
<citation key="Ker:2013:real_world">
<article_title>Moving steganography and steganalysis from
the laboratory into the real world</article_title>
<author>Ker</author>
<journal_title>Proceedings of the first ACM workshop on
information hiding and multimedia security</journal_title>
<doi>10.1145/2482513.2482965</doi>
<cYear>2013</cYear>
<unstructured_citation>Ker, A. D., Bas, P., Böhme, R.,
Cogranne, R., Craver, S., Filler, T., Fridrich, J., &amp; Pevný, T.
(2013). Moving steganography and steganalysis from the laboratory into
the real world. Proceedings of the First ACM Workshop on Information
Hiding and Multimedia Security, 45–58.
https://doi.org/10.1145/2482513.2482965</unstructured_citation>
</citation>
<citation key="Lerch-Hostalot:2019">
<article_title>Detection of classifier inconsistencies in
image steganalysis</article_title>
<author>Lerch-Hostalot</author>
<journal_title>Proceedings of the ACM workshop on
information hiding and multimedia security</journal_title>
<doi>10.1145/3335203.3335738</doi>
<isbn>9781450368216</isbn>
<cYear>2019</cYear>
<unstructured_citation>Lerch-Hostalot, D., &amp; Megı́as, D.
(2019). Detection of classifier inconsistencies in image steganalysis.
Proceedings of the ACM Workshop on Information Hiding and Multimedia
Security, 222--229.
https://doi.org/10.1145/3335203.3335738</unstructured_citation>
</citation>
<citation key="Megias:2023">
<article_title>Subsequent embedding in targeted image
steganalysis: Theoretical framework and practical
applications</article_title>
<author>Megı́as</author>
<journal_title>IEEE Transactions on Dependable and Secure
Computing</journal_title>
<issue>2</issue>
<volume>20</volume>
<doi>10.1109/tdsc.2022.3154967</doi>
<cYear>2023</cYear>
<unstructured_citation>Megı́as, D., &amp; Lerch-Hostalot, D.
(2023). Subsequent embedding in targeted image steganalysis: Theoretical
framework and practical applications. IEEE Transactions on Dependable
and Secure Computing, 20(2), 1403–1421.
https://doi.org/10.1109/tdsc.2022.3154967</unstructured_citation>
</citation>
<citation key="Li:2014:hill">
<article_title>A new cost function for spatial image
steganography</article_title>
<author>Li</author>
<journal_title>2014 IEEE international conference on image
processing (ICIP)</journal_title>
<doi>10.1109/icip.2014.7025854</doi>
<cYear>2014</cYear>
<unstructured_citation>Li, B., Wang, M., Huang, J., &amp;
Li, X. (2014). A new cost function for spatial image steganography. 2014
IEEE International Conference on Image Processing (ICIP), 4206–4210.
https://doi.org/10.1109/icip.2014.7025854</unstructured_citation>
</citation>
<citation key="Provos:2001:outguess">
<article_title>Defending against statistical
steganalysis</article_title>
<author>Provos</author>
<journal_title>10th USENIX security symposium (USENIX
security 01)</journal_title>
<cYear>2001</cYear>
<unstructured_citation>Provos, N. (2001). Defending against
statistical steganalysis. 10th USENIX Security Symposium (USENIX
Security 01), 1–13.
https://www.usenix.org/conference/10th-usenix-security-symposium/defending-against-statistical-steganalysis</unstructured_citation>
</citation>
<citation key="Sharp:2001:lsbm">
<article_title>An implementation of key-based digital signal
steganography</article_title>
<author>Sharp</author>
<journal_title>Information hiding</journal_title>
<volume>2137</volume>
<doi>10.1007/3-540-45496-9_2</doi>
<cYear>2001</cYear>
<unstructured_citation>Sharp, T. (2001). An implementation
of key-based digital signal steganography. In Information hiding (Vol.
2137, pp. 13–26). Springer.
https://doi.org/10.1007/3-540-45496-9_2</unstructured_citation>
</citation>
<citation key="Yousfi:2020:alaska2">
<article_title>ImageNet pre-trained CNNs for JPEG
steganalysis</article_title>
<author>Yousfi</author>
<journal_title>2020 IEEE international workshop on
information forensics and security (WIFS)</journal_title>
<doi>10.1109/WIFS49906.2020.9360897</doi>
<cYear>2020</cYear>
<unstructured_citation>Yousfi, Y., Butora, J., Khvedchenya,
E., &amp; Fridrich, J. (2020). ImageNet pre-trained CNNs for JPEG
steganalysis. 2020 IEEE International Workshop on Information Forensics
and Security (WIFS), 1–6.
https://doi.org/10.1109/WIFS49906.2020.9360897</unstructured_citation>
</citation>
<citation key="zhang:2019:steganogan">
<article_title>SteganoGAN: High capacity image steganography
with GANs</article_title>
<author>Zhang</author>
<cYear>2019</cYear>
<unstructured_citation>Zhang, K. A., Cuesta-Infante, A., Xu,
L., &amp; Veeramachaneni, K. (2019). SteganoGAN: High capacity image
steganography with GANs.
https://arxiv.org/abs/1901.03892</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 82ea814

Please sign in to comment.