Skip to content

Commit

Permalink
Merge pull request #6125 from openjournals/joss.06093
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Nov 12, 2024
2 parents 56d1e0d + 4a4bbb0 commit 7d4ea21
Show file tree
Hide file tree
Showing 5 changed files with 748 additions and 0 deletions.
246 changes: 246 additions & 0 deletions joss.06093/10.21105.joss.06093.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,246 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20241112193012-3964044c4000daa2f38c3756a4213dac46cd2493</doi_batch_id>
<timestamp>20241112193012</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>11</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>103</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>jointVIP: Prioritizing variables in observational study
design with joint variable importance plot in R</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Lauren D.</given_name>
<surname>Liao</surname>
<affiliations>
<institution><institution_name>Division of Biostatistics, University of California, Berkeley, USA</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0003-4697-6909</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Samuel D.</given_name>
<surname>Pimentel</surname>
<affiliations>
<institution><institution_name>Department of Statistics, University of California, Berkeley, USA</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-0409-6586</ORCID>
</person_name>
</contributors>
<publication_date>
<month>11</month>
<day>12</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6093</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06093</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.14020544</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6093</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06093</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06093</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06093.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="ahmed2006">
<article_title>Heart failure, chronic diuretic use, and
increase in mortality and hospitalization: An observational study using
propensity score methods</article_title>
<author>Ahmed</author>
<journal_title>European heart journal</journal_title>
<issue>12</issue>
<volume>27</volume>
<doi>10.1093/eurheartj/ehi890</doi>
<cYear>2006</cYear>
<unstructured_citation>Ahmed, A., Husain, A., Love, T. E.,
Gambassi, G., Dell’Italia, L. J., Francis, G. S., Gheorghiade, M.,
Allman, R. M., Meleth, S., &amp; Bourge, R. C. (2006). Heart failure,
chronic diuretic use, and increase in mortality and hospitalization: An
observational study using propensity score methods. European Heart
Journal, 27(12), 1431–1439.
https://doi.org/10.1093/eurheartj/ehi890</unstructured_citation>
</citation>
<citation key="stuart2011">
<article_title>MatchIt: Nonparametric preprocessing for
parametric causal inference</article_title>
<author>Stuart</author>
<journal_title>Journal of statistical
software</journal_title>
<doi>10.18637/jss.v042.i08</doi>
<cYear>2011</cYear>
<unstructured_citation>Stuart, E. A., King, G., Imai, K.,
&amp; Ho, D. (2011). MatchIt: Nonparametric preprocessing for parametric
causal inference. Journal of Statistical Software.
https://doi.org/10.18637/jss.v042.i08</unstructured_citation>
</citation>
<citation key="greifer2021">
<article_title>Choosing the estimand when matching or
weighting in observational studies</article_title>
<author>Greifer</author>
<journal_title>arXiv preprint
arXiv:2106.10577</journal_title>
<cYear>2021</cYear>
<unstructured_citation>Greifer, N., &amp; Stuart, E. A.
(2021). Choosing the estimand when matching or weighting in
observational studies. arXiv Preprint
arXiv:2106.10577.</unstructured_citation>
</citation>
<citation key="hansenbowers2008">
<article_title>Covariate balance in simple, stratified and
clustered comparative studies</article_title>
<author>Hansen</author>
<journal_title>Statistical Science</journal_title>
<doi>10.1214/08-sts254</doi>
<cYear>2008</cYear>
<unstructured_citation>Hansen, B. B., &amp; Bowers, J.
(2008). Covariate balance in simple, stratified and clustered
comparative studies. Statistical Science, 219–236.
https://doi.org/10.1214/08-sts254</unstructured_citation>
</citation>
<citation key="rosenbuam1985">
<article_title>Constructing a control group using
multivariate matched sampling methods that incorporate the propensity
score</article_title>
<author>Rosenbaum</author>
<journal_title>The American Statistician</journal_title>
<issue>1</issue>
<volume>39</volume>
<doi>10.1017/cbo9780511810725.019</doi>
<cYear>1985</cYear>
<unstructured_citation>Rosenbaum, P. R., &amp; Rubin, D. B.
(1985). Constructing a control group using multivariate matched sampling
methods that incorporate the propensity score. The American
Statistician, 39(1), 33–38.
https://doi.org/10.1017/cbo9780511810725.019</unstructured_citation>
</citation>
<citation key="causaldata">
<volume_title>Causaldata: Example data sets for causal
inference textbooks</volume_title>
<author>Huntington-Klein</author>
<doi>10.32614/cran.package.causaldata</doi>
<cYear>2021</cYear>
<unstructured_citation>Huntington-Klein, N., &amp; Barrett,
M. (2021). Causaldata: Example data sets for causal inference textbooks.
https://doi.org/10.32614/cran.package.causaldata</unstructured_citation>
</citation>
<citation key="dehejia1999causal">
<article_title>Causal effects in nonexperimental studies:
Reevaluating the evaluation of training programs</article_title>
<author>Dehejia</author>
<journal_title>Journal of the American statistical
Association</journal_title>
<issue>448</issue>
<volume>94</volume>
<doi>10.1080/01621459.1999.10473858</doi>
<cYear>1999</cYear>
<unstructured_citation>Dehejia, R. H., &amp; Wahba, S.
(1999). Causal effects in nonexperimental studies: Reevaluating the
evaluation of training programs. Journal of the American Statistical
Association, 94(448), 1053–1062.
https://doi.org/10.1080/01621459.1999.10473858</unstructured_citation>
</citation>
<citation key="lalonde1986evaluating">
<article_title>Evaluating the econometric evaluations of
training programs with experimental data</article_title>
<author>LaLonde</author>
<journal_title>The American economic review</journal_title>
<cYear>1986</cYear>
<unstructured_citation>LaLonde, R. J. (1986). Evaluating the
econometric evaluations of training programs with experimental data. The
American Economic Review, 604–620.</unstructured_citation>
</citation>
<citation key="cran">
<volume_title>R: A language and environment for statistical
computing</volume_title>
<author>R Core Team</author>
<cYear>2020</cYear>
<unstructured_citation>R Core Team. (2020). R: A language
and environment for statistical computing. R Foundation for Statistical
Computing. https://www.R-project.org/</unstructured_citation>
</citation>
<citation key="liao2024">
<article_title>Prioritizing variables for observational
study design using the joint variable importance plot</article_title>
<author>Liao</author>
<journal_title>The American Statistician</journal_title>
<doi>10.1080/00031305.2024.2303419</doi>
<cYear>2024</cYear>
<unstructured_citation>Liao, L. D., Zhu, Y., Ngo, A. L.,
Chehab, R. F., &amp; Pimentel, S. D. (2024). Prioritizing variables for
observational study design using the joint variable importance plot. The
American Statistician, 1–9.
https://doi.org/10.1080/00031305.2024.2303419</unstructured_citation>
</citation>
<citation key="optmatch">
<article_title>Optimal full matching and related designs via
network flows</article_title>
<author>Hansen</author>
<journal_title>Journal of Computational and Graphical
Statistics</journal_title>
<issue>3</issue>
<volume>15</volume>
<doi>10.1198/106186006x137047</doi>
<cYear>2006</cYear>
<unstructured_citation>Hansen, B. B., &amp; Klopfer, S. O.
(2006). Optimal full matching and related designs via network flows.
Journal of Computational and Graphical Statistics, 15(3), 609–627.
https://doi.org/10.1198/106186006x137047</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06093/10.21105.joss.06093.pdf
Binary file not shown.
Loading

0 comments on commit 7d4ea21

Please sign in to comment.