-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #5767 from openjournals/joss.06367
Merging automatically
- Loading branch information
Showing
3 changed files
with
1,052 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,395 @@ | ||
<?xml version="1.0" encoding="UTF-8"?> | ||
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1" | ||
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" | ||
xmlns:rel="http://www.crossref.org/relations.xsd" | ||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" | ||
version="5.3.1" | ||
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd"> | ||
<head> | ||
<doi_batch_id>20240814124945-4d02ab75854885a6121657b6b4c016d0b2bc20e2</doi_batch_id> | ||
<timestamp>20240814124945</timestamp> | ||
<depositor> | ||
<depositor_name>JOSS Admin</depositor_name> | ||
<email_address>[email protected]</email_address> | ||
</depositor> | ||
<registrant>The Open Journal</registrant> | ||
</head> | ||
<body> | ||
<journal> | ||
<journal_metadata> | ||
<full_title>Journal of Open Source Software</full_title> | ||
<abbrev_title>JOSS</abbrev_title> | ||
<issn media_type="electronic">2475-9066</issn> | ||
<doi_data> | ||
<doi>10.21105/joss</doi> | ||
<resource>https://joss.theoj.org</resource> | ||
</doi_data> | ||
</journal_metadata> | ||
<journal_issue> | ||
<publication_date media_type="online"> | ||
<month>08</month> | ||
<year>2024</year> | ||
</publication_date> | ||
<journal_volume> | ||
<volume>9</volume> | ||
</journal_volume> | ||
<issue>100</issue> | ||
</journal_issue> | ||
<journal_article publication_type="full_text"> | ||
<titles> | ||
<title>AMLTK: A Modular AutoML Toolkit in Python</title> | ||
</titles> | ||
<contributors> | ||
<person_name sequence="first" contributor_role="author"> | ||
<given_name>Edward</given_name> | ||
<surname>Bergman</surname> | ||
<ORCID>https://orcid.org/0009-0003-4390-7614</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Matthias</given_name> | ||
<surname>Feurer</surname> | ||
<ORCID>https://orcid.org/0000-0001-9611-8588</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Aron</given_name> | ||
<surname>Bahram</surname> | ||
<ORCID>https://orcid.org/0009-0002-8896-2863</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Amir Rezaei</given_name> | ||
<surname>Balef</surname> | ||
<ORCID>https://orcid.org/0000-0002-6882-0051</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Lennart</given_name> | ||
<surname>Purucker</surname> | ||
<ORCID>https://orcid.org/0009-0001-1181-0549</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Sarah</given_name> | ||
<surname>Segel</surname> | ||
<ORCID>https://orcid.org/0009-0005-2966-266X</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Marius</given_name> | ||
<surname>Lindauer</surname> | ||
<ORCID>https://orcid.org/0000-0002-9675-3175</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Frank</given_name> | ||
<surname>Hutter</surname> | ||
<ORCID>https://orcid.org/0000-0002-2037-3694</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Katharina</given_name> | ||
<surname>Eggensperger</surname> | ||
<ORCID>https://orcid.org/0000-0002-0309-401X</ORCID> | ||
</person_name> | ||
</contributors> | ||
<publication_date> | ||
<month>08</month> | ||
<day>14</day> | ||
<year>2024</year> | ||
</publication_date> | ||
<pages> | ||
<first_page>6367</first_page> | ||
</pages> | ||
<publisher_item> | ||
<identifier id_type="doi">10.21105/joss.06367</identifier> | ||
</publisher_item> | ||
<ai:program name="AccessIndicators"> | ||
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
</ai:program> | ||
<rel:program> | ||
<rel:related_item> | ||
<rel:description>Software archive</rel:description> | ||
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.13309537</rel:inter_work_relation> | ||
</rel:related_item> | ||
<rel:related_item> | ||
<rel:description>GitHub review issue</rel:description> | ||
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6367</rel:inter_work_relation> | ||
</rel:related_item> | ||
</rel:program> | ||
<doi_data> | ||
<doi>10.21105/joss.06367</doi> | ||
<resource>https://joss.theoj.org/papers/10.21105/joss.06367</resource> | ||
<collection property="text-mining"> | ||
<item> | ||
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06367.pdf</resource> | ||
</item> | ||
</collection> | ||
</doi_data> | ||
<citation_list> | ||
<citation key="erickson-arxiv20a"> | ||
<article_title>AutoGluon-tabular: Robust and accurate AutoML | ||
for structured data</article_title> | ||
<author>Erickson</author> | ||
<journal_title>arXiv:2003.06505 [stat.ML]</journal_title> | ||
<doi>10.48550/arXiv.2003.06505</doi> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Erickson, N., Mueller, J., Shirkov, | ||
A., Zhang, H., Larroy, P., Li, M., & Smola, A. (2020). | ||
AutoGluon-tabular: Robust and accurate AutoML for structured data. | ||
arXiv:2003.06505 [Stat.ML]. | ||
https://doi.org/10.48550/arXiv.2003.06505</unstructured_citation> | ||
</citation> | ||
<citation key="feurer-nips15a"> | ||
<article_title>Efficient and robust automated machine | ||
learning</article_title> | ||
<author>Feurer</author> | ||
<journal_title>Advances in Neural Information Processing | ||
Systems 28 (NIPS 2015)</journal_title> | ||
<cYear>2015</cYear> | ||
<unstructured_citation>Feurer, M., Klein, A., Eggensperger, | ||
K., Springenberg, J., Blum, M., & Hutter, F. (2015). Efficient and | ||
robust automated machine learning. Advances in Neural Information | ||
Processing Systems 28 (NIPS 2015), 2962–2970.</unstructured_citation> | ||
</citation> | ||
<citation key="feurer-jmlr22a"> | ||
<article_title>Auto-Sklearn 2.0: Hands-free AutoML via | ||
meta-learning</article_title> | ||
<author>Feurer</author> | ||
<journal_title>Journal of Machine Learning | ||
Research</journal_title> | ||
<issue>261</issue> | ||
<volume>23</volume> | ||
<doi>10.48550/arXiv.2007.04074</doi> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Feurer, M., Eggensperger, K., | ||
Falkner, S., Lindauer, M., & Hutter, F. (2022). Auto-Sklearn 2.0: | ||
Hands-free AutoML via meta-learning. Journal of Machine Learning | ||
Research, 23(261), 1–61. | ||
https://doi.org/10.48550/arXiv.2007.04074</unstructured_citation> | ||
</citation> | ||
<citation key="gijsbers-arxiv23a"> | ||
<article_title>AMLB: An AutoML benchmark</article_title> | ||
<author>Gijsbers</author> | ||
<journal_title>arXiv:2207.12560 [stat.ML]</journal_title> | ||
<doi>10.48550/arxiv.2207.12560</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Gijsbers, P., Bueno, M., Coors, S., | ||
LeDell, E., Poirier, S., Thomas, J., Bischl, B., & Vanschoren, J. | ||
(2023). AMLB: An AutoML benchmark. arXiv:2207.12560 [Stat.ML]. | ||
https://doi.org/10.48550/arxiv.2207.12560</unstructured_citation> | ||
</citation> | ||
<citation key="zimmer-tpami21a"> | ||
<article_title>Auto-Pytorch: Multi-fidelity MetaLearning for | ||
efficient and robust AutoDL</article_title> | ||
<author>Zimmer</author> | ||
<journal_title>IEEE Transactions on Pattern Analysis and | ||
Machine Intelligence</journal_title> | ||
<volume>43</volume> | ||
<doi>10.1109/tpami.2021.3067763</doi> | ||
<cYear>2021</cYear> | ||
<unstructured_citation>Zimmer, L., Lindauer, M., & | ||
Hutter, F. (2021). Auto-Pytorch: Multi-fidelity MetaLearning for | ||
efficient and robust AutoDL. IEEE Transactions on Pattern Analysis and | ||
Machine Intelligence, 43, 3079–3090. | ||
https://doi.org/10.1109/tpami.2021.3067763</unstructured_citation> | ||
</citation> | ||
<citation key="hutter-book19a"> | ||
<volume_title>Automated machine learning: Methods, systems, | ||
challenges</volume_title> | ||
<doi>10.1007/978-3-030-05318-5</doi> | ||
<cYear>2019</cYear> | ||
<unstructured_citation>Hutter, F., Kotthoff, L., & | ||
Vanschoren, J. (Eds.). (2019). Automated machine learning: Methods, | ||
systems, challenges. Springer. | ||
https://doi.org/10.1007/978-3-030-05318-5</unstructured_citation> | ||
</citation> | ||
<citation key="gijsbers-kdd21a"> | ||
<article_title>GAMA: A general automated machine learning | ||
assistant</article_title> | ||
<author>Gijsbers</author> | ||
<journal_title>Machine learning and knowledge discovery in | ||
databases. Applied data science and demo track</journal_title> | ||
<doi>10.1007/978-3-030-67670-4_39</doi> | ||
<cYear>2021</cYear> | ||
<unstructured_citation>Gijsbers, P., & Vanschoren, J. | ||
(2021). GAMA: A general automated machine learning assistant. Machine | ||
Learning and Knowledge Discovery in Databases. Applied Data Science and | ||
Demo Track, 560–564. | ||
https://doi.org/10.1007/978-3-030-67670-4_39</unstructured_citation> | ||
</citation> | ||
<citation key="gijsbers-joss19a"> | ||
<article_title>GAMA: Genetic automated machine learning | ||
assistant</article_title> | ||
<author>Gijsbers</author> | ||
<journal_title>Journal of Open Source | ||
Software</journal_title> | ||
<volume>4</volume> | ||
<doi>10.21105/joss.01132</doi> | ||
<cYear>2019</cYear> | ||
<unstructured_citation>Gijsbers, P., & Vanschoren, J. | ||
(2019). GAMA: Genetic automated machine learning assistant. Journal of | ||
Open Source Software, 4. | ||
https://doi.org/10.21105/joss.01132</unstructured_citation> | ||
</citation> | ||
<citation key="lindauer-jmlr22a"> | ||
<article_title>SMAC3: A versatile Bayesian optimization | ||
package for Hyperparameter Optimization</article_title> | ||
<author>Lindauer</author> | ||
<journal_title>Journal of Machine Learning | ||
Research</journal_title> | ||
<issue>54</issue> | ||
<volume>23</volume> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Lindauer, M., Eggensperger, K., | ||
Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Ruhkopf, T., Sass, | ||
R., & Hutter, F. (2022). SMAC3: A versatile Bayesian optimization | ||
package for Hyperparameter Optimization. Journal of Machine Learning | ||
Research, 23(54), 1–9.</unstructured_citation> | ||
</citation> | ||
<citation key="sass-realml22a"> | ||
<article_title>DeepCAVE: An interactive analysis tool for | ||
automated machine learning</article_title> | ||
<author>Sass</author> | ||
<journal_title>ICML adaptive experimental design and active | ||
learning in the real world (ReALML workshop 2022)</journal_title> | ||
<doi>10.48550/arxiv.2206.03493</doi> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Sass, R., Bergman, E., Biedenkapp, | ||
A., Hutter, F., & Lindauer, M. (2022). DeepCAVE: An interactive | ||
analysis tool for automated machine learning. ICML Adaptive Experimental | ||
Design and Active Learning in the Real World (ReALML Workshop 2022). | ||
https://doi.org/10.48550/arxiv.2206.03493</unstructured_citation> | ||
</citation> | ||
<citation key="lindauer-arxiv19a"> | ||
<article_title>BOAH: A tool suite for multi-fidelity | ||
Bayesian optimization & analysis of hyperparameters</article_title> | ||
<author>Lindauer</author> | ||
<journal_title>arXiv:1908.06756 [cs.LG]</journal_title> | ||
<doi>10.48550/arxiv.1908.06756</doi> | ||
<cYear>2019</cYear> | ||
<unstructured_citation>Lindauer, M., Eggensperger, K., | ||
Feurer, M., Biedenkapp, A., Marben, J., Müller, P., & Hutter, F. | ||
(2019). BOAH: A tool suite for multi-fidelity Bayesian optimization | ||
& analysis of hyperparameters. arXiv:1908.06756 [Cs.LG]. | ||
https://doi.org/10.48550/arxiv.1908.06756</unstructured_citation> | ||
</citation> | ||
<citation key="mohr-ml23a"> | ||
<article_title>Naive automated machine | ||
learning</article_title> | ||
<author>Mohr</author> | ||
<journal_title>Machine Learning</journal_title> | ||
<issue>4</issue> | ||
<volume>112</volume> | ||
<doi>10.1007/s10994-022-06200-0</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Mohr, F., & Wever, M. (2023). | ||
Naive automated machine learning. Machine Learning, 112(4), 1131–1170. | ||
https://doi.org/10.1007/s10994-022-06200-0</unstructured_citation> | ||
</citation> | ||
<citation key="akiba-kdd19a"> | ||
<article_title>Optuna: A next-generation Hyperparameter | ||
Optimization framework</article_title> | ||
<author>Akiba</author> | ||
<journal_title>Proceedings of the 25th ACM SIGKDD | ||
international conference on knowledge discovery & data mining | ||
(KDD’19)</journal_title> | ||
<doi>10.1145/3292500.3330701</doi> | ||
<cYear>2019</cYear> | ||
<unstructured_citation>Akiba, T., Sano, S., Yanase, T., | ||
Ohta, T., & Koyama, M. (2019). Optuna: A next-generation | ||
Hyperparameter Optimization framework. Proceedings of the 25th ACM | ||
SIGKDD International Conference on Knowledge Discovery & Data Mining | ||
(KDD’19), 2623–2631. | ||
https://doi.org/10.1145/3292500.3330701</unstructured_citation> | ||
</citation> | ||
<citation key="thornton-kdd13a"> | ||
<article_title>Auto-WEKA: Combined selection and | ||
hyperparameter optimization of classification algorithms</article_title> | ||
<author>Thornton</author> | ||
<journal_title>Proceedings of the 19th ACM SIGKDD | ||
international conference on knowledge discovery & data mining | ||
(KDD’13)</journal_title> | ||
<doi>10.1007/978-3-030-05318-5_4</doi> | ||
<cYear>2013</cYear> | ||
<unstructured_citation>Thornton, C., Hutter, F., Hoos, H., | ||
& Leyton-Brown, K. (2013). Auto-WEKA: Combined selection and | ||
hyperparameter optimization of classification algorithms. Proceedings of | ||
the 19th ACM SIGKDD International Conference on Knowledge Discovery | ||
& Data Mining (KDD’13), 847–855. | ||
https://doi.org/10.1007/978-3-030-05318-5_4</unstructured_citation> | ||
</citation> | ||
<citation key="olson-gecco16a"> | ||
<article_title>Evaluation of a tree-based pipeline | ||
optimization tool for automating data science</article_title> | ||
<author>Olson</author> | ||
<journal_title>Proceedings of the genetic and evolutionary | ||
computation conference 2016</journal_title> | ||
<doi>10.1145/2908812.2908918</doi> | ||
<cYear>2016</cYear> | ||
<unstructured_citation>Olson, R., Bartley, N., Urbanowicz, | ||
R., & Moore, J. (2016). Evaluation of a tree-based pipeline | ||
optimization tool for automating data science. Proceedings of the | ||
Genetic and Evolutionary Computation Conference 2016, 485–492. | ||
https://doi.org/10.1145/2908812.2908918</unstructured_citation> | ||
</citation> | ||
<citation key="autoprognosis"> | ||
<article_title>AutoPrognosis 2.0: Democratizing diagnostic | ||
and prognostic modeling in healthcare with automated machine | ||
learning</article_title> | ||
<author>Imrie</author> | ||
<journal_title>arXiv:2210.12090 [cs.LG]</journal_title> | ||
<doi>10.1371/journal.pdig.0000276</doi> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Imrie, F., Cebere, B., McKinney, E., | ||
& Schaar, M. van der. (2022). AutoPrognosis 2.0: Democratizing | ||
diagnostic and prognostic modeling in healthcare with automated machine | ||
learning. arXiv:2210.12090 [Cs.LG]. | ||
https://doi.org/10.1371/journal.pdig.0000276</unstructured_citation> | ||
</citation> | ||
<citation key="wang2021flaml"> | ||
<article_title>FLAML: A fast and lightweight automl | ||
library</article_title> | ||
<author>Wang</author> | ||
<journal_title>Proceedings of Machine Learning and | ||
Systems</journal_title> | ||
<volume>3</volume> | ||
<cYear>2021</cYear> | ||
<unstructured_citation>Wang, C., Wu, Q., Weimer, M., & | ||
Zhu, E. (2021). FLAML: A fast and lightweight automl library. | ||
Proceedings of Machine Learning and Systems, 3, | ||
434–447.</unstructured_citation> | ||
</citation> | ||
<citation key="baudart2021"> | ||
<article_title>Pipeline combinators for gradual | ||
AutoML</article_title> | ||
<author>Baudart</author> | ||
<journal_title>Advances in neural information processing | ||
systems (NeurIPS)</journal_title> | ||
<cYear>2021</cYear> | ||
<unstructured_citation>Baudart, G., Hirzel, M., Kate, K., | ||
Ram, P., Shinnar, A., & Tsay, J. (2021). Pipeline combinators for | ||
gradual AutoML. Advances in Neural Information Processing Systems | ||
(NeurIPS), 19705–19718. | ||
https://proceedings.neurips.cc/paper/2021/file/a3b36cb25e2e0b93b5f334ffb4e4064e-Paper.pdf</unstructured_citation> | ||
</citation> | ||
<citation key="ledell2020"> | ||
<article_title>H2O AutoML: Scalable automatic machine | ||
learning</article_title> | ||
<author>LeDell</author> | ||
<journal_title>7th ICML Workshop on Automated Machine | ||
Learning (AutoML)</journal_title> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>LeDell, E., & Poirier, S. (2020). | ||
H2O AutoML: Scalable automatic machine learning. 7th ICML Workshop on | ||
Automated Machine Learning (AutoML). | ||
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf</unstructured_citation> | ||
</citation> | ||
</citation_list> | ||
</journal_article> | ||
</journal> | ||
</body> | ||
</doi_batch> |
Binary file not shown.
Oops, something went wrong.