Skip to content

Commit

Permalink
Merge pull request #5680 from openjournals/joss.06800
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jul 25, 2024
2 parents 4978271 + 89efdc9 commit 77d5dcd
Show file tree
Hide file tree
Showing 3 changed files with 1,251 additions and 0 deletions.
324 changes: 324 additions & 0 deletions joss.06800/10.21105.joss.06800.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,324 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240725155751-1387524ca0bdd1c12df22de6144aaed7c7103c5d</doi_batch_id>
<timestamp>20240725155751</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>07</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>99</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>tidylda: An R Package for Latent Dirichlet Allocation
Using ‘tidyverse’ Conventions</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Tommy</given_name>
<surname>Jones</surname>
<ORCID>https://orcid.org/0000-0001-6457-2452</ORCID>
</person_name>
</contributors>
<publication_date>
<month>07</month>
<day>25</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6800</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06800</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.12809519</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6800</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06800</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06800</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06800.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="tidyverse">
<article_title>Welcome to the tidyverse</article_title>
<author>Wickham</author>
<journal_title>Journal of Open Source
Software</journal_title>
<issue>43</issue>
<volume>4</volume>
<doi>10.21105/joss.01686</doi>
<cYear>2019</cYear>
<unstructured_citation>Wickham, H., Averick, M., Bryan, J.,
Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A.,
Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S.
M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., …
Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source
Software, 4(43), 1686.
https://doi.org/10.21105/joss.01686</unstructured_citation>
</citation>
<citation key="roberts2019stm">
<article_title>stm : An R Package for Structural Topic
Models</article_title>
<author>Roberts</author>
<journal_title>Journal of Statistical
Software</journal_title>
<issue>2</issue>
<volume>91</volume>
<doi>10.18637/jss.v091.i02</doi>
<cYear>2019</cYear>
<unstructured_citation>Roberts, M. E., Stewart, B. M., &amp;
Tingley, D. (2019). stm : An R Package for Structural Topic Models.
Journal of Statistical Software, 91(2).
https://doi.org/10.18637/jss.v091.i02</unstructured_citation>
</citation>
<citation key="tidytextjss">
<article_title>Text Mining with R: A Tidy
Approach</article_title>
<author>Fay</author>
<journal_title>Journal of Statistical
Software</journal_title>
<issue>Book Review 1</issue>
<volume>83</volume>
<doi>10.18637/jss.v083.b01</doi>
<cYear>2018</cYear>
<unstructured_citation>Fay, C. (2018). Text Mining with R: A
Tidy Approach. Journal of Statistical Software, 83(Book Review 1).
https://doi.org/10.18637/jss.v083.b01</unstructured_citation>
</citation>
<citation key="quanteda">
<article_title>quanteda: An R package for the quantitative
analysis of textual data</article_title>
<author>Benoit</author>
<journal_title>Journal of Open Source
Software</journal_title>
<issue>30</issue>
<volume>3</volume>
<doi>10.21105/joss.00774</doi>
<cYear>2018</cYear>
<unstructured_citation>Benoit, K., Watanabe, K., Wang, H.,
Nulty, P., Obeng, A., Müller, S., &amp; Matsuo, A. (2018). quanteda: An
R package for the quantitative analysis of textual data. Journal of Open
Source Software, 3(30), 774.
https://doi.org/10.21105/joss.00774</unstructured_citation>
</citation>
<citation key="tidytextjoss">
<article_title>tidytext: Text Mining and Analysis Using Tidy
Data Principles in R</article_title>
<author>Silge</author>
<journal_title>The Journal of Open Source
Software</journal_title>
<issue>3</issue>
<volume>1</volume>
<doi>10.21105/joss.00037</doi>
<cYear>2016</cYear>
<unstructured_citation>Silge, J., &amp; Robinson, D. (2016).
tidytext: Text Mining and Analysis Using Tidy Data Principles in R. The
Journal of Open Source Software, 1(3), 37.
https://doi.org/10.21105/joss.00037</unstructured_citation>
</citation>
<citation key="chang2015lda">
<article_title>lda</article_title>
<author>Chang</author>
<doi>10.32614/CRAN.package.lda</doi>
<cYear>2015</cYear>
<unstructured_citation>Chang, J. (2015). lda.
https://doi.org/10.32614/CRAN.package.lda</unstructured_citation>
</citation>
<citation key="broom">
<article_title>broom: An R Package for Converting
Statistical Analysis Objects Into Tidy Data Frames</article_title>
<author>Robinson</author>
<journal_title>arXiv</journal_title>
<doi>10.32614/CRAN.package.broom</doi>
<cYear>2014</cYear>
<unstructured_citation>Robinson, D. (2014). broom: An R
Package for Converting Statistical Analysis Objects Into Tidy Data
Frames. arXiv.
https://doi.org/10.32614/CRAN.package.broom</unstructured_citation>
</citation>
<citation key="blei2002lda">
<article_title>Latent Dirichlet Allocation</article_title>
<author>Blei</author>
<journal_title>Journal of Machine Learning
Research</journal_title>
<volume>3</volume>
<cYear>2003</cYear>
<unstructured_citation>Blei, D. M., Ng, A. Y., &amp; Jordan,
M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning
Research, 3.</unstructured_citation>
</citation>
<citation key="jones2023latent">
<article_title>Latent Dirichlet Allocation for Natural
Language Statistics</article_title>
<author>Jones</author>
<cYear>2023</cYear>
<unstructured_citation>Jones, T. (2023). Latent Dirichlet
Allocation for Natural Language Statistics [PhD thesis]. George Mason
University.</unstructured_citation>
</citation>
<citation key="tidymodelsbook">
<article_title>Conventions for R Modeling
Packages</article_title>
<author>Khun</author>
<cYear>2019</cYear>
<unstructured_citation>Khun, M. (2019). Conventions for R
Modeling Packages.
https://tidymodels.github.io/model-implementation-principles/index.html</unstructured_citation>
</citation>
<citation key="wickham2014tidy">
<article_title>Tidy data</article_title>
<author>Wickham</author>
<journal_title>Journal of Statistical
Software</journal_title>
<issue>10</issue>
<volume>59</volume>
<cYear>2014</cYear>
<unstructured_citation>Wickham, H., &amp; others. (2014).
Tidy data. Journal of Statistical Software, 59(10),
1–23.</unstructured_citation>
</citation>
<citation key="tidymodels">
<article_title>Tidymodels</article_title>
<author>Khun</author>
<doi>10.32614/CRAN.package.tidymodels</doi>
<cYear>2018</cYear>
<unstructured_citation>Khun, M., &amp; Wickham, H. (2018).
Tidymodels.
https://doi.org/10.32614/CRAN.package.tidymodels</unstructured_citation>
</citation>
<citation key="text2vec">
<article_title>text2vec</article_title>
<author>Selivanov</author>
<doi>10.32614/CRAN.package.text2vec</doi>
<cYear>2020</cYear>
<unstructured_citation>Selivanov, D., Bickel, M., &amp;
Wang, Q. (2020). text2vec. CRAN.
https://doi.org/10.32614/CRAN.package.text2vec</unstructured_citation>
</citation>
<citation key="roberts2013stm">
<article_title>The Structural Topic Model and Applied Social
Science</article_title>
<author>Roberts</author>
<doi>10.32614/CRAN.package.stm</doi>
<cYear>2013</cYear>
<unstructured_citation>Roberts, M. E., Stewart, B. M.,
Tingley, D., &amp; Airoldi, E. M. (2013). The Structural Topic Model and
Applied Social Science.
https://doi.org/10.32614/CRAN.package.stm</unstructured_citation>
</citation>
<citation key="textminer">
<article_title>textmineR: Functions for Text Mining and
Topic Modeling</article_title>
<author>Jones</author>
<cYear>2015</cYear>
<unstructured_citation>Jones, T. (2015). textmineR:
Functions for Text Mining and Topic Modeling.
https://CRAN.R-project.org/package=textmineR</unstructured_citation>
</citation>
<citation key="topicmodelspackage">
<article_title>topicmodels: An R Package for Fitting Topic
Models</article_title>
<author>Grün</author>
<journal_title>Journal of Statistical
Software</journal_title>
<issue>13</issue>
<volume>40</volume>
<doi>10.32614/CRAN.package.topicmodel</doi>
<cYear>2011</cYear>
<unstructured_citation>Grün, B., &amp; Hornik, K. (2011).
topicmodels: An R Package for Fitting Topic Models. Journal of
Statistical Software, 40(13).
https://doi.org/10.32614/CRAN.package.topicmodel</unstructured_citation>
</citation>
<citation key="tmjss">
<article_title>Text Mining Infrastructure in
R</article_title>
<author>Feinerer</author>
<journal_title>Journal of Statistical
Software</journal_title>
<issue>5</issue>
<volume>25</volume>
<doi>10.32614/CRAN.package.tm</doi>
<cYear>2008</cYear>
<unstructured_citation>Feinerer, I., Hornik, K., &amp;
Meyer, D. (2008). Text Mining Infrastructure in R. Journal of
Statistical Software, 25(5).
https://doi.org/10.32614/CRAN.package.tm</unstructured_citation>
</citation>
<citation key="blei2007ctm">
<article_title>A correlated topic model of
Science</article_title>
<author>Blei</author>
<journal_title>The Annals of Applied
Statistics</journal_title>
<issue>1</issue>
<volume>1</volume>
<doi>10.1214/07-aoas114</doi>
<issn>1932-6157</issn>
<cYear>2007</cYear>
<unstructured_citation>Blei, D. M., &amp; Lafferty, J. D.
(2007). A correlated topic model of Science. The Annals of Applied
Statistics, 1(1), 17–35.
https://doi.org/10.1214/07-aoas114</unstructured_citation>
</citation>
<citation key="chen2015warplda">
<article_title>WarpLDA: a Cache Efficient O(1) Algorithm for
Latent Dirichlet Allocation</article_title>
<author>Chen</author>
<journal_title>arXiv</journal_title>
<doi>10.14778/2977797.297780</doi>
<cYear>2015</cYear>
<unstructured_citation>Chen, J., Li, K., Zhu, J., &amp;
Chen, W. (2015). WarpLDA: a Cache Efficient O(1) Algorithm for Latent
Dirichlet Allocation. arXiv.
https://doi.org/10.14778/2977797.297780</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06800/10.21105.joss.06800.pdf
Binary file not shown.
Loading

0 comments on commit 77d5dcd

Please sign in to comment.