Skip to content

Commit

Permalink
Merge pull request #4916 from openjournals/joss.05749
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jan 16, 2024
2 parents 3e86432 + ce5b255 commit 768e9db
Show file tree
Hide file tree
Showing 3 changed files with 654 additions and 0 deletions.
271 changes: 271 additions & 0 deletions joss.05749/10.21105.joss.05749.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,271 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240116T161721-75536f38c405d9baaa54ec77fb4dbb595552bdd0</doi_batch_id>
<timestamp>20240116161721</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>01</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>93</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>SPICY: a Python toolbox for meshless assimilation from
image velocimetry using radial basis functions</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Pietro</given_name>
<surname>Sperotto</surname>
<ORCID>https://orcid.org/0000-0001-9412-0828</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>M.</given_name>
<surname>Ratz</surname>
<ORCID>https://orcid.org/0009-0008-8491-8367</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>M. A.</given_name>
<surname>Mendez</surname>
<ORCID>https://orcid.org/0000-0002-1115-2187</ORCID>
</person_name>
</contributors>
<publication_date>
<month>01</month>
<day>16</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>5749</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05749</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10473329</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5749</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05749</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05749</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05749.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Sperotto2022">
<article_title>A meshless method to compute pressure fields
from image velocimetry</article_title>
<author>Sperotto</author>
<journal_title>Measurement Science and
Technology</journal_title>
<issue>9</issue>
<volume>33</volume>
<doi>10.1088/1361-6501/ac70a9</doi>
<cYear>2022</cYear>
<unstructured_citation>Sperotto, P., Pieraccini, S., &amp;
Mendez, M. A. (2022). A meshless method to compute pressure fields from
image velocimetry. Measurement Science and Technology, 33(9), 094005.
https://doi.org/10.1088/1361-6501/ac70a9</unstructured_citation>
</citation>
<citation key="Heyman2019">
<article_title>TracTrac: A fast multi-object tracking
algorithm for motion estimation</article_title>
<author>Heyman</author>
<journal_title>Computers &amp; Geosciences</journal_title>
<volume>128</volume>
<doi>10.1016/j.cageo.2019.03.007</doi>
<cYear>2019</cYear>
<unstructured_citation>Heyman, J. (2019). TracTrac: A fast
multi-object tracking algorithm for motion estimation. Computers &amp;
Geosciences, 128, 11–18.
https://doi.org/10.1016/j.cageo.2019.03.007</unstructured_citation>
</citation>
<citation key="Meller2016">
<article_title>Particle data management software for
3DParticle tracking velocimetry and related applications the flowtracks
package</article_title>
<author>Meller</author>
<journal_title>Journal of Open Research
Software</journal_title>
<issue>1</issue>
<volume>4</volume>
<doi>10.5334/jors.101</doi>
<cYear>2016</cYear>
<unstructured_citation>Meller, Y., &amp; Liberzon, A.
(2016). Particle data management software for 3DParticle tracking
velocimetry and related applications the flowtracks package. Journal of
Open Research Software, 4(1), 23.
https://doi.org/10.5334/jors.101</unstructured_citation>
</citation>
<citation key="Liberzon2020">
<article_title>OpenPIV spatial and temporal analysis
toolbox</article_title>
<author>Liberzon</author>
<doi>10.6084/M9.FIGSHARE.12330608</doi>
<cYear>2020</cYear>
<unstructured_citation>Liberzon, A., Roi Gurka, Lepchev, D.,
&amp; Hadar Ben-Gida. (2020). OpenPIV spatial and temporal analysis
toolbox. figshare.
https://doi.org/10.6084/M9.FIGSHARE.12330608</unstructured_citation>
</citation>
<citation key="Thielicke2021">
<article_title>Particle image velocimetry for MATLAB:
Accuracy and enhanced algorithms in PIVlab</article_title>
<author>Thielicke</author>
<journal_title>Journal of Open Research
Software</journal_title>
<issue>1</issue>
<volume>9</volume>
<doi>10.5334/jors.334</doi>
<cYear>2021</cYear>
<unstructured_citation>Thielicke, W., &amp; Sonntag, R.
(2021). Particle image velocimetry for MATLAB: Accuracy and enhanced
algorithms in PIVlab. Journal of Open Research Software, 9(1), 12.
https://doi.org/10.5334/jors.334</unstructured_citation>
</citation>
<citation key="Ratz2022a">
<article_title>Radial basis function regression of
Lagrangian three-dimensional particle tracking data</article_title>
<author>Ratz</author>
<journal_title>International symposium on applications of
laser and imaging techniques to fluid mechanics</journal_title>
<cYear>2022</cYear>
<unstructured_citation>Ratz, M., Sachs, S., König, J.,
Mendez, M. A., &amp; Cierpka., C. (2022). Radial basis function
regression of Lagrangian three-dimensional particle tracking data.
International Symposium on Applications of Laser and Imaging Techniques
to Fluid Mechanics.</unstructured_citation>
</citation>
<citation key="Fornberg2015">
<article_title>Solving PDEs with radial basis
functions</article_title>
<author>Fornberg</author>
<journal_title>Acta Numerica</journal_title>
<volume>24</volume>
<doi>10.1017/s0962492914000130</doi>
<cYear>2015</cYear>
<unstructured_citation>Fornberg, B., &amp; Flyer, N. (2015).
Solving PDEs with radial basis functions. Acta Numerica, 24, 215–258.
https://doi.org/10.1017/s0962492914000130</unstructured_citation>
</citation>
<citation key="Sperotto2022b">
<article_title>A RANS approach to the Meshless Computation
of Pressure Fields From Image Velocimetry</article_title>
<author>Sperotto</author>
<journal_title>International symposium on applications of
laser and imaging techniques to fluid mechanics</journal_title>
<cYear>2022</cYear>
<unstructured_citation>Sperotto, P., Pieraccini, S., &amp;
Mendez, M. (2022). A RANS approach to the Meshless Computation of
Pressure Fields From Image Velocimetry. International Symposium on
Applications of Laser and Imaging Techniques to Fluid
Mechanics.</unstructured_citation>
</citation>
<citation key="Rao2020">
<article_title>Physics-informed deep learning for
incompressible laminar flows</article_title>
<author>Rao</author>
<journal_title>Theoretical and Applied Mechanics
Letters</journal_title>
<issue>3</issue>
<volume>10</volume>
<doi>10.1016/j.taml.2020.01.039</doi>
<cYear>2020</cYear>
<unstructured_citation>Rao, C., Sun, H., &amp; Liu, Y.
(2020). Physics-informed deep learning for incompressible laminar flows.
Theoretical and Applied Mechanics Letters, 10(3).
https://doi.org/10.1016/j.taml.2020.01.039</unstructured_citation>
</citation>
<citation key="Gesemann2016">
<article_title>From Noisy Particle Tracks to Velocity,
Acceleration and Pressure Fields using B-splines and
Penalties</article_title>
<author>Gesemann</author>
<journal_title>International symposium on applications of
laser techniques to fluid mechanics</journal_title>
<cYear>2016</cYear>
<unstructured_citation>Gesemann, S., Huhn, F., Schanz, D.,
&amp; Schröder, A. (2016). From Noisy Particle Tracks to Velocity,
Acceleration and Pressure Fields using B-splines and Penalties.
International Symposium on Applications of Laser Techniques to Fluid
Mechanics.</unstructured_citation>
</citation>
<citation key="Schneiders2016a">
<article_title>Pressure estimation from single-snapshot
tomographic PIV in a turbulent boundary layer</article_title>
<author>Schneiders</author>
<journal_title>Experiments in Fluids</journal_title>
<issue>4</issue>
<volume>57</volume>
<doi>10.1007/s00348-016-2133-9</doi>
<cYear>2016</cYear>
<unstructured_citation>Schneiders, J. F. G., Pröbsting, S.,
Dwight, R. P., Oudheusden, B. W. van, &amp; Scarano, F. (2016). Pressure
estimation from single-snapshot tomographic PIV in a turbulent boundary
layer. Experiments in Fluids, 57(4).
https://doi.org/10.1007/s00348-016-2133-9</unstructured_citation>
</citation>
<citation key="Agarwal2021">
<article_title>Reconstructing velocity and pressure from
noisy sparse particle tracks using constrained cost
minimization</article_title>
<author>Agarwal</author>
<journal_title>Experiments in Fluids</journal_title>
<issue>4</issue>
<volume>62</volume>
<doi>10.1007/s00348-021-03172-0</doi>
<cYear>2021</cYear>
<unstructured_citation>Agarwal, K., Ram, O., Wang, J., Lu,
Y., &amp; Katz, J. (2021). Reconstructing velocity and pressure from
noisy sparse particle tracks using constrained cost minimization.
Experiments in Fluids, 62(4).
https://doi.org/10.1007/s00348-021-03172-0</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 768e9db

Please sign in to comment.