Skip to content

Commit

Permalink
Merge pull request #5427 from openjournals/joss.06384
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jun 1, 2024
2 parents c3ff6be + b2b67d8 commit 738d7aa
Show file tree
Hide file tree
Showing 5 changed files with 841 additions and 0 deletions.
315 changes: 315 additions & 0 deletions joss.06384/10.21105.joss.06384.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,315 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240601211502-eaae8960d170b4a7621fb96c57d9231ea4bae8e0</doi_batch_id>
<timestamp>20240601211502</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>06</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>98</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>Efficient Polyhedral Gravity Modeling in Modern C++ and
Python</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Jonas</given_name>
<surname>Schuhmacher</surname>
<ORCID>https://orcid.org/0009-0005-9693-4530</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Emmanuel</given_name>
<surname>Blazquez</surname>
<ORCID>https://orcid.org/0000-0001-9697-582X</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Fabio</given_name>
<surname>Gratl</surname>
<ORCID>https://orcid.org/0000-0001-5195-7919</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Dario</given_name>
<surname>Izzo</surname>
<ORCID>https://orcid.org/0000-0002-9846-8423</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Pablo</given_name>
<surname>Gómez</surname>
<ORCID>https://orcid.org/0000-0002-5631-8240</ORCID>
</person_name>
</contributors>
<publication_date>
<month>06</month>
<day>01</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6384</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06384</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.11221939</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6384</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06384</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06384</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06384.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="tsoulis2012analytical">
<article_title>Analytical computation of the full gravity
tensor of a homogeneous arbitrarily shaped polyhedral source using line
integrals</article_title>
<author>Tsoulis</author>
<journal_title>Geophysics</journal_title>
<issue>2</issue>
<volume>77</volume>
<doi>10.1190/geo2010-0334.1</doi>
<cYear>2012</cYear>
<unstructured_citation>Tsoulis, D. (2012). Analytical
computation of the full gravity tensor of a homogeneous arbitrarily
shaped polyhedral source using line integrals. Geophysics, 77(2),
F1–F11. https://doi.org/10.1190/geo2010-0334.1</unstructured_citation>
</citation>
<citation key="tsoulis2021computational">
<article_title>A computational review of the line integral
analytical formulation of the polyhedral gravity signal</article_title>
<author>Tsoulis</author>
<journal_title>Geophysical Prospecting</journal_title>
<issue>8-9</issue>
<volume>69</volume>
<doi>10.1111/1365-2478.13134</doi>
<cYear>2021</cYear>
<unstructured_citation>Tsoulis, D., &amp; Gavriilidou, G.
(2021). A computational review of the line integral analytical
formulation of the polyhedral gravity signal. Geophysical Prospecting,
69(8-9), 1745–1760.
https://doi.org/10.1111/1365-2478.13134</unstructured_citation>
</citation>
<citation key="izzo2022geodesy">
<article_title>Geodesy of irregular small bodies via neural
density fields</article_title>
<author>Izzo</author>
<journal_title>Communications Engineering</journal_title>
<issue>1</issue>
<volume>1</volume>
<doi>10.1038/s44172-022-00050-3</doi>
<cYear>2022</cYear>
<unstructured_citation>Izzo, D., &amp; Gómez, P. (2022).
Geodesy of irregular small bodies via neural density fields.
Communications Engineering, 1(1), 48.
https://doi.org/10.1038/s44172-022-00050-3</unstructured_citation>
</citation>
<citation key="schuhmacher2023investigation">
<article_title>Investigation of the robustness of neural
density fields</article_title>
<author>Schuhmacher</author>
<journal_title>Proceedings of the 12th international
conference on guidance, navigation &amp; control systems
(GNC)</journal_title>
<doi>10.5270/esa-gnc-icatt-2023-067</doi>
<cYear>2023</cYear>
<unstructured_citation>Schuhmacher, J., Gratl, F., Izzo, D.,
&amp; Gómez, P. (2023). Investigation of the robustness of neural
density fields. Proceedings of the 12th International Conference on
Guidance, Navigation &amp; Control Systems (GNC).
https://doi.org/10.5270/esa-gnc-icatt-2023-067</unstructured_citation>
</citation>
<citation key="marak2023trajectory">
<article_title>Trajectory optimization of a spacecraft swarm
orbiting around 67P/Churyumov-Gerasimenko</article_title>
<author>Maråk</author>
<journal_title>Proceedings of the 9th international
conference on astrodynamics tools and techniques, ICATT</journal_title>
<doi>10.5270/esa-gnc-icatt-2023-057</doi>
<cYear>2023</cYear>
<unstructured_citation>Maråk, R., Blazquez, E., &amp; Gómez,
P. (2023). Trajectory optimization of a spacecraft swarm orbiting around
67P/Churyumov-Gerasimenko. Proceedings of the 9th International
Conference on Astrodynamics Tools and Techniques, ICATT.
https://doi.org/10.5270/esa-gnc-icatt-2023-057</unstructured_citation>
</citation>
<citation key="schuhmacher2022efficient">
<article_title>Efficient Polyhedral Gravity Modeling in
Modern C++</article_title>
<author>Schuhmacher</author>
<cYear>2022</cYear>
<unstructured_citation>Schuhmacher, J. (2022). Efficient
Polyhedral Gravity Modeling in Modern C++. Technische Universität
München.
https://mediatum.ub.tum.de/doc/1695208/1695208.pdf</unstructured_citation>
</citation>
<citation key="tsoulis2001singularities">
<article_title>On the singularities of the gravity field of
a homogeneous polyhedral body</article_title>
<author>Tsoulis</author>
<journal_title>Geophysics</journal_title>
<issue>2</issue>
<volume>66</volume>
<doi>10.1190/1.1444944</doi>
<cYear>2001</cYear>
<unstructured_citation>Tsoulis, D., &amp; Petrović, S.
(2001). On the singularities of the gravity field of a homogeneous
polyhedral body. Geophysics, 66(2), 535–539.
https://doi.org/10.1190/1.1444944</unstructured_citation>
</citation>
<citation key="petrovic1996determination">
<article_title>Determination of the potential of homogeneous
polyhedral bodies using line integrals</article_title>
<author>Petrović</author>
<journal_title>Journal of Geodesy</journal_title>
<volume>71</volume>
<doi>10.1007/s001900050074</doi>
<cYear>1996</cYear>
<unstructured_citation>Petrović, S. (1996). Determination of
the potential of homogeneous polyhedral bodies using line integrals.
Journal of Geodesy, 71, 44–52.
https://doi.org/10.1007/s001900050074</unstructured_citation>
</citation>
<citation key="hang2015tetgen">
<article_title>TetGen, a delaunay-based quality tetrahedral
mesh generator</article_title>
<author>Hang</author>
<journal_title>ACM Trans. Math. Softw</journal_title>
<issue>2</issue>
<volume>41</volume>
<doi>10.1145/2629697</doi>
<cYear>2015</cYear>
<unstructured_citation>Hang, S. (2015). TetGen, a
delaunay-based quality tetrahedral mesh generator. ACM Trans. Math.
Softw, 41(2), 11.
https://doi.org/10.1145/2629697</unstructured_citation>
</citation>
<citation key="wittick2017mascon">
<article_title>Mascon models for small body gravity
fields</article_title>
<author>Wittick</author>
<journal_title>AAS/AIAA astrodynamics specialist
conference</journal_title>
<volume>162</volume>
<cYear>2017</cYear>
<unstructured_citation>Wittick, P. T., &amp; Russell, R. P.
(2017). Mascon models for small body gravity fields. AAS/AIAA
Astrodynamics Specialist Conference, 162,
17–162.</unstructured_citation>
</citation>
<citation key="vsprlak2021use">
<article_title>On the use of spherical harmonic series
inside the minimum brillouin sphere: Theoretical review and evaluation
by GRAIL and LOLA satellite data</article_title>
<author>Šprlák</author>
<journal_title>Earth-Science Reviews</journal_title>
<volume>222</volume>
<doi>10.1016/j.earscirev.2021.103739</doi>
<cYear>2021</cYear>
<unstructured_citation>Šprlák, M., &amp; Han, S.-C. (2021).
On the use of spherical harmonic series inside the minimum brillouin
sphere: Theoretical review and evaluation by GRAIL and LOLA satellite
data. Earth-Science Reviews, 222, 103739.
https://doi.org/10.1016/j.earscirev.2021.103739</unstructured_citation>
</citation>
<citation key="biscani2020pygmo">
<article_title>A parallel global multiobjective framework
for optimization: pagmo</article_title>
<author>Biscani</author>
<journal_title>Journal of Open Source
Software</journal_title>
<issue>53</issue>
<volume>5</volume>
<doi>10.21105/joss.02338</doi>
<cYear>2020</cYear>
<unstructured_citation>Biscani, F., &amp; Izzo, D. (2020). A
parallel global multiobjective framework for optimization: pagmo.
Journal of Open Source Software, 5(53), 2338.
https://doi.org/10.21105/joss.02338</unstructured_citation>
</citation>
<citation key="gaskell2008eros">
<article_title>Eros polyhedral model</article_title>
<author>Gaskell</author>
<cYear>2008</cYear>
<unstructured_citation>Gaskell, R. W. (2008). Eros
polyhedral model.
https://arcnav.psi.edu/urn:nasa:pds:gaskell.ast-eros.shape-model.</unstructured_citation>
</citation>
<citation key="zhang2010modeling">
<article_title>Modeling and analysis of gravity field of
433Eros using polyhedron model method</article_title>
<author>Zhang</author>
<journal_title>2010 2nd international conference on
information engineering and computer science</journal_title>
<doi>10.1109/iciecs.2010.5677738</doi>
<cYear>2010</cYear>
<unstructured_citation>Zhang, Z., Cui, H., Cui, P., &amp;
Yu, M. (2010). Modeling and analysis of gravity field of 433Eros using
polyhedron model method. 2010 2nd International Conference on
Information Engineering and Computer Science, 1–4.
https://doi.org/10.1109/iciecs.2010.5677738</unstructured_citation>
</citation>
<citation key="martin2023physics">
<article_title>The physics-informed neural network gravity
model revisited: Model generation III</article_title>
<author>Martin</author>
<journal_title>33rd AAS/AIAA space flight mechanics meeting,
austin, united states</journal_title>
<cYear>2023</cYear>
<unstructured_citation>Martin, J., &amp; Schaub, H. (2023).
The physics-informed neural network gravity model revisited: Model
generation III. 33rd AAS/AIAA Space Flight Mechanics Meeting, Austin,
United States.</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06384/10.21105.joss.06384.pdf
Binary file not shown.
Loading

0 comments on commit 738d7aa

Please sign in to comment.