Skip to content

Commit

Permalink
Merge pull request #5445 from openjournals/joss.05350
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jun 4, 2024
2 parents 968d28d + 93043d8 commit 6d6deaf
Show file tree
Hide file tree
Showing 3 changed files with 644 additions and 0 deletions.
229 changes: 229 additions & 0 deletions joss.05350/10.21105.joss.05350.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,229 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240604091411-2bdb2646651be4a5d39b19d4e0fd1b445c2ca238</doi_batch_id>
<timestamp>20240604091411</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>06</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>98</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>omni-fig: Unleashing Project Configuration and
Organization in Python</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Felix</given_name>
<surname>Leeb</surname>
<ORCID>https://orcid.org/0000-0002-3127-5707</ORCID>
</person_name>
</contributors>
<publication_date>
<month>06</month>
<day>04</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>5350</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05350</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.11424101</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5350</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05350</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05350</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05350.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="guyonartificial">
<article_title>Artificial intelligence for
all</article_title>
<author>Guyon</author>
<unstructured_citation>Guyon, I. (n.d.). Artificial
intelligence for all.</unstructured_citation>
</citation>
<citation key="hydra">
<article_title>Hydra - a framework for elegantly configuring
complex applications</article_title>
<author>Yadan</author>
<cYear>2019</cYear>
<unstructured_citation>Yadan, O. (2019). Hydra - a framework
for elegantly configuring complex applications. Github.
https://github.com/facebookresearch/hydra</unstructured_citation>
</citation>
<citation key="ginconfig">
<article_title>Gin config - provides a lightweight
configuration framework for Python</article_title>
<author>Holtmann-Rice</author>
<cYear>2018</cYear>
<unstructured_citation>Holtmann-Rice, D., Guadarrama, S.,
&amp; Silberman, N. (2018). Gin config - provides a lightweight
configuration framework for Python. Github.
https://github.com/google/gin-config</unstructured_citation>
</citation>
<citation key="pydantic">
<article_title>Pydantic - data parsing and validation using
Python type hints</article_title>
<author>Colvin</author>
<cYear>2019</cYear>
<unstructured_citation>Colvin, S. (2019). Pydantic - data
parsing and validation using Python type hints. Github.
https://github.com/pydantic/pydantic</unstructured_citation>
</citation>
<citation key="omegaconf">
<article_title>OmegaConf - flexible Python configuration
system</article_title>
<cYear>2012</cYear>
<unstructured_citation>OmegaConf - flexible Python
configuration system. (2012). Github.
https://github.com/omry/omegaconf</unstructured_citation>
</citation>
<citation key="dynaconf">
<article_title>Dynaconf - configuration management for
Python</article_title>
<author>Rocha</author>
<cYear>2018</cYear>
<unstructured_citation>Rocha, B. (2018). Dynaconf -
configuration management for Python. Github.
https://github.com/dynaconf/dynaconf</unstructured_citation>
</citation>
<citation key="configparser">
<article_title>Configparser - configuration file
parser</article_title>
<unstructured_citation>Configparser - configuration file
parser. (n.d.).
https://docs.python.org/3/library/configparser.html</unstructured_citation>
</citation>
<citation key="argparse">
<article_title>Argparse - parser for command-line options,
arguments and sub-commands</article_title>
<unstructured_citation>Argparse - parser for command-line
options, arguments and sub-commands. (n.d.).
https://docs.python.org/3/library/argparse.html</unstructured_citation>
</citation>
<citation key="arro2022confr">
<article_title>Confr–a configuration system for machine
learning projects</article_title>
<author>Arro</author>
<cYear>2022</cYear>
<unstructured_citation>Arro, M. (2022). Confr–a
configuration system for machine learning
projects.</unstructured_citation>
</citation>
<citation key="ebert2016devops">
<article_title>DevOps</article_title>
<author>Ebert</author>
<journal_title>IEEE Software</journal_title>
<issue>3</issue>
<volume>33</volume>
<cYear>2016</cYear>
<unstructured_citation>Ebert, C., Gallardo, G., Hernantes,
J., &amp; Serrano, N. (2016). DevOps. IEEE Software, 33(3),
94–100.</unstructured_citation>
</citation>
<citation key="treveil2020introducing">
<volume_title>Introducing MLOps</volume_title>
<author>Treveil</author>
<cYear>2020</cYear>
<unstructured_citation>Treveil, M., Omont, N., Stenac, C.,
Lefevre, K., Phan, D., Zentici, J., Lavoillotte, A., Miyazaki, M., &amp;
Heidmann, L. (2020). Introducing MLOps. O’Reilly
Media.</unstructured_citation>
</citation>
<citation key="pineau2021improving">
<article_title>Improving reproducibility in machine learning
research: A report from the NeurIPS 2019 reproducibility
program</article_title>
<author>Pineau</author>
<journal_title>Journal of Machine Learning
Research</journal_title>
<volume>22</volume>
<cYear>2021</cYear>
<unstructured_citation>Pineau, J., Vincent-Lamarre, P.,
Sinha, K., Larivière, V., Beygelzimer, A., d’Alché-Buc, F., Fox, E.,
&amp; Larochelle, H. (2021). Improving reproducibility in machine
learning research: A report from the NeurIPS 2019 reproducibility
program. Journal of Machine Learning Research,
22.</unstructured_citation>
</citation>
<citation key="aho2020demystifying">
<article_title>Demystifying data science projects: A look on
the people and process of data science today</article_title>
<author>Aho</author>
<journal_title>International conference on product-focused
software process improvement</journal_title>
<doi>10.1007/978-3-030-64148-1_10</doi>
<cYear>2020</cYear>
<unstructured_citation>Aho, T., Sievi-Korte, O., Kilamo, T.,
Yaman, S., &amp; Mikkonen, T. (2020). Demystifying data science
projects: A look on the people and process of data science today.
International Conference on Product-Focused Software Process
Improvement, 153–167.
https://doi.org/10.1007/978-3-030-64148-1_10</unstructured_citation>
</citation>
<citation key="he2021automl">
<article_title>AutoML: A survey of the
state-of-the-art</article_title>
<author>He</author>
<journal_title>Knowledge-Based Systems</journal_title>
<volume>212</volume>
<doi>10.1016/j.knosys.2020.106622</doi>
<cYear>2021</cYear>
<unstructured_citation>He, X., Zhao, K., &amp; Chu, X.
(2021). AutoML: A survey of the state-of-the-art. Knowledge-Based
Systems, 212, 106622.
https://doi.org/10.1016/j.knosys.2020.106622</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.05350/10.21105.joss.05350.pdf
Binary file not shown.
Loading

0 comments on commit 6d6deaf

Please sign in to comment.