Skip to content

Commit

Permalink
Merge pull request #4725 from openjournals/joss.05420
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Oct 25, 2023
2 parents 97f50e5 + dab8aab commit 4daabca
Show file tree
Hide file tree
Showing 7 changed files with 1,000 additions and 0 deletions.
316 changes: 316 additions & 0 deletions joss.05420/10.21105.joss.05420.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,316 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20231025T124122-e97c05673a505ab57f757d9de77da11bb8a57c0e</doi_batch_id>
<timestamp>20231025124122</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>10</month>
<year>2023</year>
</publication_date>
<journal_volume>
<volume>8</volume>
</journal_volume>
<issue>90</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>libscientific: A Powerful C Library for Multivariate
Analysis</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Giuseppe Marco</given_name>
<surname>Randazzo</surname>
<ORCID>https://orcid.org/0000-0003-1585-0019</ORCID>
</person_name>
</contributors>
<publication_date>
<month>10</month>
<day>25</day>
<year>2023</year>
</publication_date>
<pages>
<first_page>5420</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05420</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.8436823</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5420</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05420</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05420</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05420.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Geladi86">
<article_title>Partial least-squares regression: A
tutorial</article_title>
<author>Geladi</author>
<journal_title>Analytica Chimica Acta</journal_title>
<volume>185</volume>
<doi>10.1016/0003-2670(86)80028-9</doi>
<issn>0003-2670</issn>
<cYear>1986</cYear>
<unstructured_citation>Geladi, P., &amp; Kowalski, B. R.
(1986). Partial least-squares regression: A tutorial. Analytica Chimica
Acta, 185, 1–17.
https://doi.org/10.1016/0003-2670(86)80028-9</unstructured_citation>
</citation>
<citation key="SWold87">
<article_title>Multi-way principal components-and
PLS-analysis</article_title>
<author>Wold</author>
<journal_title>Journal of Chemometrics</journal_title>
<issue>1</issue>
<volume>1</volume>
<doi>10.1002/cem.1180010107</doi>
<issn>0886-9383</issn>
<cYear>1987</cYear>
<unstructured_citation>Wold, S., Geladi, P., Esbensen, K.,
&amp; Öhman, J. (1987). Multi-way principal components-and PLS-analysis.
Journal of Chemometrics, 1(1), 41–56.
https://doi.org/10.1002/cem.1180010107</unstructured_citation>
</citation>
<citation key="Westerhuis98">
<article_title>Analysis of multiblock and hierarchical PCA
and PLS models</article_title>
<author>Westerhuis</author>
<journal_title>Journal of Chemometrics</journal_title>
<issue>5</issue>
<volume>12</volume>
<doi>10.1002/(SICI)1099-128X(199809/10)12:5&lt;301::AID-CEM515&gt;3.0.CO;2-S</doi>
<cYear>1998</cYear>
<unstructured_citation>Westerhuis, J. A., Kourti, T., &amp;
MacGregor, J. F. (1998). Analysis of multiblock and hierarchical PCA and
PLS models. Journal of Chemometrics, 12(5), 301–321.
https://doi.org/10.1002/(SICI)1099-128X(199809/10)12:5&lt;301::AID-CEM515&gt;3.0.CO;2-S</unstructured_citation>
</citation>
<citation key="Martens2001">
<volume_title>Multivariate analysis of quality : An
introduction</volume_title>
<author>Martens</author>
<doi>10.1088/0957-0233/12/10/708</doi>
<isbn>9780471974284</isbn>
<cYear>2001</cYear>
<unstructured_citation>Martens, H., &amp; Martens, M.
(2001). Multivariate analysis of quality : An introduction. Wiley.
https://doi.org/10.1088/0957-0233/12/10/708</unstructured_citation>
</citation>
<citation key="LittleRubin1987">
<volume_title>Statistical analysis with missing
data</volume_title>
<author>Little</author>
<doi>10.1002/9781119013563</doi>
<isbn>0471183865</isbn>
<cYear>1987</cYear>
<unstructured_citation>Little, R. J. A., &amp; Rubin, D. B.
(1987). Statistical analysis with missing data. Wiley.
https://doi.org/10.1002/9781119013563</unstructured_citation>
</citation>
<citation key="Qifa2005">
<article_title>Robust L1 norm factorization in the presence
of outliers and missing data by alternative convex
programming</article_title>
<author>Ke</author>
<volume>1</volume>
<doi>10.1109/CVPR.2005.309</doi>
<cYear>2005</cYear>
<unstructured_citation>Ke, Q., &amp; Kanade, T. (2005).
Robust L1 norm factorization in the presence of outliers and missing
data by alternative convex programming. 1, 739–746 vol. 1.
https://doi.org/10.1109/CVPR.2005.309</unstructured_citation>
</citation>
<citation key="Hudson96">
<article_title>Parameter based methods for compound
selection from chemical databases</article_title>
<author>Hudson</author>
<journal_title>Quantitative Structure-Activity
Relationships</journal_title>
<issue>4</issue>
<volume>15</volume>
<doi>10.1002/qsar.19960150402</doi>
<cYear>1996</cYear>
<unstructured_citation>Hudson, B. D., Hyde, R. M., Rahr, E.,
Wood, J., &amp; Osman, J. (1996). Parameter based methods for compound
selection from chemical databases. Quantitative Structure-Activity
Relationships, 15(4), 285–289.
https://doi.org/10.1002/qsar.19960150402</unstructured_citation>
</citation>
<citation key="Holliday1996">
<article_title>Definitions of "dissimilarity" for
dissimilarity-based compound selection</article_title>
<author>Holliday</author>
<journal_title>SLAS Discovery</journal_title>
<issue>3</issue>
<volume>1</volume>
<doi>10.1177/108705719600100308</doi>
<issn>2472-5552</issn>
<cYear>1996</cYear>
<unstructured_citation>Holliday, J. D., &amp; Willett, P.
(1996). Definitions of "dissimilarity" for dissimilarity-based compound
selection. SLAS Discovery, 1(3), 145–151.
https://doi.org/10.1177/108705719600100308</unstructured_citation>
</citation>
<citation key="Randazzo16">
<article_title>Prediction of retention time in
reversed-phase liquid chromatography as a tool for steroid
identification</article_title>
<author>Randazzo</author>
<journal_title>Analytica Chimica Acta</journal_title>
<volume>916</volume>
<doi>10.1016/j.aca.2016.02.014</doi>
<issn>0003-2670</issn>
<cYear>2016</cYear>
<unstructured_citation>Randazzo, G. M., Tonoli, D., Hambye,
S., Guillarme, D., Jeanneret, F., Nurisso, A., Goracci, L., Boccard, J.,
&amp; Rudaz, S. (2016). Prediction of retention time in reversed-phase
liquid chromatography as a tool for steroid identification. Analytica
Chimica Acta, 916, 8–16.
https://doi.org/10.1016/j.aca.2016.02.014</unstructured_citation>
</citation>
<citation key="Randazzo171">
<article_title>Indirect quantitative structure-retention
relationship for steroid identification: A chemometric challenge at
“chimiométrie 2016”</article_title>
<author>Randazzo</author>
<journal_title>Chemometrics and Intelligent Laboratory
Systems</journal_title>
<volume>160</volume>
<doi>10.1016/j.chemolab.2016.11.010</doi>
<issn>0169-7439</issn>
<cYear>2017</cYear>
<unstructured_citation>Randazzo, G. M., Vigneau, E.,
Courcoux, P., Harrouet, C., Lijour, Y., Dardenne, P., Boccard, J., &amp;
Rudaz, S. (2017). Indirect quantitative structure-retention relationship
for steroid identification: A chemometric challenge at “chimiométrie
2016.” Chemometrics and Intelligent Laboratory Systems, 160, 52–58.
https://doi.org/10.1016/j.chemolab.2016.11.010</unstructured_citation>
</citation>
<citation key="Randazzo172">
<article_title>Enhanced metabolite annotation via dynamic
retention time prediction: Steroidogenesis alterations as a case
study</article_title>
<author>Randazzo</author>
<journal_title>Journal of Chromatography B</journal_title>
<volume>1071</volume>
<doi>10.1016/j.jchromb.2017.04.032</doi>
<issn>1570-0232</issn>
<cYear>2017</cYear>
<unstructured_citation>Randazzo, G. M., Tonoli, D.,
Strajhar, P., Xenarios, I., Odermatt, A., Boccard, J., &amp; Rudaz, S.
(2017). Enhanced metabolite annotation via dynamic retention time
prediction: Steroidogenesis alterations as a case study. Journal of
Chromatography B, 1071, 11–18.
https://doi.org/10.1016/j.jchromb.2017.04.032</unstructured_citation>
</citation>
<citation key="Randazzo20">
<article_title>Steroid identification via deep learning
retention time predictions and two-dimensional gas chromatography-high
resolution mass spectrometry</article_title>
<author>Randazzo</author>
<journal_title>Journal of Chromatography A</journal_title>
<volume>1612</volume>
<doi>10.1016/j.chroma.2019.460661</doi>
<issn>0021-9673</issn>
<cYear>2020</cYear>
<unstructured_citation>Randazzo, G. M., Bileck, A., Danani,
A., Vogt, B., &amp; Groessl, M. (2020). Steroid identification via deep
learning retention time predictions and two-dimensional gas
chromatography-high resolution mass spectrometry. Journal of
Chromatography A, 1612, 460661.
https://doi.org/10.1016/j.chroma.2019.460661</unstructured_citation>
</citation>
<citation key="Kwon21">
<article_title>Dual therapeutic targeting of intra-articular
inflammation and intracellular bacteria enhances chondroprotection in
septic arthritis</article_title>
<author>Kwon</author>
<journal_title>Science Advances</journal_title>
<issue>26</issue>
<volume>7</volume>
<doi>10.1126/sciadv.abf2665</doi>
<cYear>2021</cYear>
<unstructured_citation>Kwon, H.-K., Lee, I., Yu, K. E.,
Cahill, S. V., Alder, K. D., Lee, S., Dussik, C. M., Back, J., Choi, J.,
Song, L., Kyriakides, T. R., &amp; Lee, F. Y. (2021). Dual therapeutic
targeting of intra-articular inflammation and intracellular bacteria
enhances chondroprotection in septic arthritis. Science Advances, 7(26),
eabf2665. https://doi.org/10.1126/sciadv.abf2665</unstructured_citation>
</citation>
<citation key="Kwon22">
<article_title>Treating ‘septic’ with enhanced antibiotics
and ‘arthritis’ by mitigation of excessive inflammation</article_title>
<author>Kwon</author>
<journal_title>Frontiers in Cellular and Infection
Microbiology</journal_title>
<volume>12</volume>
<doi>10.3389/fcimb.2022.897291</doi>
<issn>2235-2988</issn>
<cYear>2022</cYear>
<unstructured_citation>Kwon, H.-K., Dussik, C. M., Kim,
S.-H., Kyriakides, T. R., Oh, I., &amp; Lee, F. Y. (2022). Treating
“septic” with enhanced antibiotics and “arthritis” by mitigation of
excessive inflammation. Frontiers in Cellular and Infection
Microbiology, 12.
https://doi.org/10.3389/fcimb.2022.897291</unstructured_citation>
</citation>
<citation key="Lorber87">
<article_title>A theoretical foundation for the PLS
algorithm</article_title>
<author>Lorber</author>
<journal_title>Journal of Chemometrics</journal_title>
<issue>1</issue>
<volume>1</volume>
<doi>10.1002/cem.1180010105</doi>
<cYear>1987</cYear>
<unstructured_citation>Lorber, A., Wangen, L. E., &amp;
Kowalski, B. R. (1987). A theoretical foundation for the PLS algorithm.
Journal of Chemometrics, 1(1), 19–31.
https://doi.org/10.1002/cem.1180010105</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 4daabca

Please sign in to comment.