Skip to content

Commit

Permalink
Merge pull request #4705 from openjournals/joss.05397
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Oct 19, 2023
2 parents 579da7b + af9f9d1 commit 3e9adf0
Show file tree
Hide file tree
Showing 4 changed files with 1,161 additions and 0 deletions.
391 changes: 391 additions & 0 deletions joss.05397/10.21105.joss.05397.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,391 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20231019T100359-d2ff7b2afc7d410ff5b1b31b2c4d79ed578b8c85</doi_batch_id>
<timestamp>20231019100359</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>10</month>
<year>2023</year>
</publication_date>
<journal_volume>
<volume>8</volume>
</journal_volume>
<issue>90</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>Baargin: a Nextflow workflow for the automatic analysis
of bacterial genomics data with a focus on Antimicrobial
Resistance</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Juliette</given_name>
<surname>Hayer</surname>
<ORCID>https://orcid.org/0000-0003-4899-9637</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Jacques</given_name>
<surname>Dainat</surname>
<ORCID>https://orcid.org/0000-0002-6629-0173</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Ella</given_name>
<surname>Marcy</surname>
<ORCID>https://orcid.org/0009-0002-6000-1665</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Anne-Laure</given_name>
<surname>Bañuls</surname>
<ORCID>https://orcid.org/0000-0002-2106-8667</ORCID>
</person_name>
</contributors>
<publication_date>
<month>10</month>
<day>19</day>
<year>2023</year>
</publication_date>
<pages>
<first_page>5397</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05397</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.8386399</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5397</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05397</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05397</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05397.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Thompson:2022">
<article_title>The staggering death toll of drug-resistant
bacteria</article_title>
<author>Thompson</author>
<journal_title>Nature</journal_title>
<doi>10.1038/D41586-022-00228-X</doi>
<issn>0028-0836</issn>
<cYear>2022</cYear>
<unstructured_citation>Thompson, T. (2022). The staggering
death toll of drug-resistant bacteria. Nature.
https://doi.org/10.1038/D41586-022-00228-X</unstructured_citation>
</citation>
<citation key="DITommaso:2017">
<article_title>Nextflow enables reproducible computational
workflows</article_title>
<author>DI Tommaso</author>
<journal_title>Nature Biotechnology 2017
35:4</journal_title>
<issue>4</issue>
<volume>35</volume>
<doi>10.1038/nbt.3820</doi>
<issn>1546-1696</issn>
<cYear>2017</cYear>
<unstructured_citation>DI Tommaso, P., Chatzou, M., Floden,
E. W., Barja, P. P., Palumbo, E., &amp; Notredame, C. (2017). Nextflow
enables reproducible computational workflows. Nature Biotechnology 2017
35:4, 35(4), 316–319.
https://doi.org/10.1038/nbt.3820</unstructured_citation>
</citation>
<citation key="Petit:2020">
<article_title>Bactopia: a flexible pipeline for complete
analysis of bacterial genomes</article_title>
<author>Petit III</author>
<journal_title>Msystems</journal_title>
<doi>10.1128/mSystems.00190-20</doi>
<issn>2379-5077</issn>
<cYear>2020</cYear>
<unstructured_citation>Petit III, &amp;. R., R. A. (2020).
Bactopia: a flexible pipeline for complete analysis of bacterial
genomes. Msystems.
https://doi.org/10.1128/mSystems.00190-20</unstructured_citation>
</citation>
<citation key="Chen:2018">
<article_title>fastp: an ultra-fast all-in-one FASTQ
preprocessor</article_title>
<author>Chen</author>
<journal_title>Bioinformatics</journal_title>
<issue>17</issue>
<volume>34</volume>
<doi>10.1093/BIOINFORMATICS/BTY560</doi>
<issn>1367-4803</issn>
<cYear>2018</cYear>
<unstructured_citation>Chen, S., Zhou, Y., Chen, Y., &amp;
Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor.
Bioinformatics, 34(17), i884–i890.
https://doi.org/10.1093/BIOINFORMATICS/BTY560</unstructured_citation>
</citation>
<citation key="Prjibelski:2020">
<article_title>Using SPAdes De Novo
Assembler</article_title>
<author>Prjibelski</author>
<journal_title>Current Protocols in
Bioinformatics</journal_title>
<issue>1</issue>
<volume>70</volume>
<doi>10.1002/CPBI.102</doi>
<issn>1934-340X</issn>
<cYear>2020</cYear>
<unstructured_citation>Prjibelski, A., Antipov, D.,
Meleshko, D., Lapidus, A., &amp; Korobeynikov, A. (2020). Using SPAdes
De Novo Assembler. Current Protocols in Bioinformatics, 70(1), e102.
https://doi.org/10.1002/CPBI.102</unstructured_citation>
</citation>
<citation key="Wick:2017">
<article_title>Unicycler: Resolving bacterial genome
assemblies from short and long sequencing reads</article_title>
<author>Wick</author>
<journal_title>PLOS Computational Biology</journal_title>
<issue>6</issue>
<volume>13</volume>
<doi>10.1371/JOURNAL.PCBI.1005595</doi>
<issn>1553-7358</issn>
<cYear>2017</cYear>
<unstructured_citation>Wick, R. R., Judd, L. M., Gorrie, C.
L., &amp; Holt, K. E. (2017). Unicycler: Resolving bacterial genome
assemblies from short and long sequencing reads. PLOS Computational
Biology, 13(6), e1005595.
https://doi.org/10.1371/JOURNAL.PCBI.1005595</unstructured_citation>
</citation>
<citation key="Wood:2019">
<article_title>Improved metagenomic analysis with Kraken
2</article_title>
<author>Wood</author>
<journal_title>Genome Biology</journal_title>
<issue>1</issue>
<volume>20</volume>
<doi>10.1186/S13059-019-1891-0</doi>
<cYear>2019</cYear>
<unstructured_citation>Wood, D. E., Lu, J., &amp; Langmead,
B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology,
20(1), 1–13.
https://doi.org/10.1186/S13059-019-1891-0</unstructured_citation>
</citation>
<citation key="Lu:2022">
<article_title>Metagenome analysis using the Kraken software
suite</article_title>
<author>Lu</author>
<journal_title>Nature protocols</journal_title>
<issue>12</issue>
<volume>17</volume>
<doi>10.1038/S41596-022-00738-Y</doi>
<cYear>2022</cYear>
<unstructured_citation>Lu, J., Rincon, N., Wood, D. E.,
Breitwieser, F. P., Pockrandt, C., Langmead, B., Salzberg, S. L., &amp;
Steinegger, M. (2022). Metagenome analysis using the Kraken software
suite. Nature Protocols, 17(12), 2815.
https://doi.org/10.1038/S41596-022-00738-Y</unstructured_citation>
</citation>
<citation key="Gurevich:2013">
<article_title>QUAST: quality assessment tool for genome
assemblies</article_title>
<author>Gurevich</author>
<journal_title>Bioinformatics</journal_title>
<issue>8</issue>
<volume>29</volume>
<doi>10.1093/BIOINFORMATICS/BTT086</doi>
<issn>1367-4803</issn>
<cYear>2013</cYear>
<unstructured_citation>Gurevich, A., Saveliev, V., Vyahhi,
N., &amp; Tesler, G. (2013). QUAST: quality assessment tool for genome
assemblies. Bioinformatics, 29(8), 1072–1075.
https://doi.org/10.1093/BIOINFORMATICS/BTT086</unstructured_citation>
</citation>
<citation key="Manni:2021">
<article_title>BUSCO Update: Novel and Streamlined Workflows
along with Broader and Deeper Phylogenetic Coverage for Scoring of
Eukaryotic, Prokaryotic, and Viral Genomes</article_title>
<author>Manni</author>
<journal_title>Molecular Biology and
Evolution</journal_title>
<issue>10</issue>
<volume>38</volume>
<doi>10.1093/MOLBEV/MSAB199</doi>
<cYear>2021</cYear>
<unstructured_citation>Manni, M., Berkeley, M. R., Seppey,
M., Simão, F. A., &amp; Zdobnov, E. M. (2021). BUSCO Update: Novel and
Streamlined Workflows along with Broader and Deeper Phylogenetic
Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes.
Molecular Biology and Evolution, 38(10), 4647–4654.
https://doi.org/10.1093/MOLBEV/MSAB199</unstructured_citation>
</citation>
<citation key="Seemann:2022">
<article_title>MLST</article_title>
<author>Seemann</author>
<cYear>2022</cYear>
<unstructured_citation>Seemann, T. (2022). MLST.
https://github.com/tseemann/mlst</unstructured_citation>
</citation>
<citation key="Carattoli:2014">
<article_title>In silico detection and typing of plasmids
using PlasmidFinder and plasmid multilocus sequence
typing</article_title>
<author>Carattoli</author>
<journal_title>Antimicrobial agents and
chemotherapy</journal_title>
<issue>7</issue>
<volume>58</volume>
<doi>10.1128/AAC.02412-14</doi>
<issn>1098-6596</issn>
<cYear>2014</cYear>
<unstructured_citation>Carattoli, A., Zankari, E.,
Garciá-Fernández, A., Larsen, M. V., Lund, O., Villa, L., Aarestrup, F.
M., &amp; Hasman, H. (2014). In silico detection and typing of plasmids
using PlasmidFinder and plasmid multilocus sequence typing.
Antimicrobial Agents and Chemotherapy, 58(7), 3895–3903.
https://doi.org/10.1128/AAC.02412-14</unstructured_citation>
</citation>
<citation key="Schwengers:2020">
<article_title>Platon: identification and characterization
of bacterial plasmid contigs in short-read draft assemblies exploiting
protein sequence-based replicon distribution scores</article_title>
<author>Schwengers</author>
<journal_title>Microbial genomics</journal_title>
<issue>10</issue>
<volume>6</volume>
<doi>10.1099/MGEN.0.000398</doi>
<issn>2057-5858</issn>
<cYear>2020</cYear>
<unstructured_citation>Schwengers, O., Barth, P.,
Falgenhauer, L., Hain, T., Chakraborty, T., &amp; Goesmann, A. (2020).
Platon: identification and characterization of bacterial plasmid contigs
in short-read draft assemblies exploiting protein sequence-based
replicon distribution scores. Microbial Genomics, 6(10), 1–12.
https://doi.org/10.1099/MGEN.0.000398</unstructured_citation>
</citation>
<citation key="Alcock:2023">
<article_title>CARD 2023: expanded curation, support for
machine learning, and resistome prediction at the Comprehensive
Antibiotic Resistance Database</article_title>
<author>Alcock</author>
<journal_title>Nucleic acids research</journal_title>
<issue>D1</issue>
<volume>51</volume>
<doi>10.1093/NAR/GKAC920</doi>
<issn>1362-4962</issn>
<cYear>2023</cYear>
<unstructured_citation>Alcock, B. P., Huynh, W., Chalil, R.,
Smith, K. W., Raphenya, A. R., Wlodarski, M. A., Edalatmand, A., Petkau,
A., Syed, S. A., Tsang, K. K., Baker, S. J. C., Dave, M., McCarthy, M.
C., Mukiri, K. M., Nasir, J. A., Golbon, B., Imtiaz, H., Jiang, X.,
Kaur, K., … McArthur, A. G. (2023). CARD 2023: expanded curation,
support for machine learning, and resistome prediction at the
Comprehensive Antibiotic Resistance Database. Nucleic Acids Research,
51(D1). https://doi.org/10.1093/NAR/GKAC920</unstructured_citation>
</citation>
<citation key="Feldgarden:2021">
<article_title>AMRFinderPlus and the Reference Gene Catalog
facilitate examination of the genomic links among antimicrobial
resistance, stress response, and virulence</article_title>
<author>Feldgarden</author>
<journal_title>Scientific Reports 2021 11:1</journal_title>
<issue>1</issue>
<volume>11</volume>
<doi>10.1038/s41598-021-91456-0</doi>
<issn>2045-2322</issn>
<isbn>0123456789</isbn>
<cYear>2021</cYear>
<unstructured_citation>Feldgarden, M., Brover, V.,
Gonzalez-Escalona, N., Frye, J. G., Haendiges, J., Haft, D. H.,
Hoffmann, M., Pettengill, J. B., Prasad, A. B., Tillman, G. E., Tyson,
G. H., &amp; Klimke, W. (2021). AMRFinderPlus and the Reference Gene
Catalog facilitate examination of the genomic links among antimicrobial
resistance, stress response, and virulence. Scientific Reports 2021
11:1, 11(1), 1–9.
https://doi.org/10.1038/s41598-021-91456-0</unstructured_citation>
</citation>
<citation key="Seemann:2014">
<article_title>Prokka: rapid prokaryotic genome
annotation</article_title>
<author>Seemann</author>
<journal_title>Bioinformatics</journal_title>
<issue>14</issue>
<volume>30</volume>
<doi>10.1093/BIOINFORMATICS/BTU153</doi>
<issn>1367-4803</issn>
<cYear>2014</cYear>
<unstructured_citation>Seemann, T. (2014). Prokka: rapid
prokaryotic genome annotation. Bioinformatics, 30(14), 2068–2069.
https://doi.org/10.1093/BIOINFORMATICS/BTU153</unstructured_citation>
</citation>
<citation key="Schwengers:2021">
<article_title>Bakta: rapid and standardized annotation of
bacterial genomes via alignment-free sequence
identification</article_title>
<author>Schwengers</author>
<journal_title>Microbial Genomics</journal_title>
<issue>11</issue>
<volume>7</volume>
<doi>10.1099/MGEN.0.000685</doi>
<cYear>2021</cYear>
<unstructured_citation>Schwengers, O., Jelonek, L.,
Dieckmann, M. A., Beyvers, S., Blom, J., &amp; Goesmann, A. (2021).
Bakta: rapid and standardized annotation of bacterial genomes via
alignment-free sequence identification. Microbial Genomics, 7(11), 685.
https://doi.org/10.1099/MGEN.0.000685</unstructured_citation>
</citation>
<citation key="Page:2015">
<article_title>Roary: rapid large-scale prokaryote pan
genome analysis</article_title>
<author>Page</author>
<journal_title>Bioinformatics</journal_title>
<issue>22</issue>
<volume>31</volume>
<doi>10.1093/BIOINFORMATICS/BTV421</doi>
<issn>1367-4803</issn>
<cYear>2015</cYear>
<unstructured_citation>Page, A. J., Cummins, C. A., Hunt,
M., Wong, V. K., Reuter, S., Holden, M. T. G., Fookes, M., Falush, D.,
Keane, J. A., &amp; Parkhill, J. (2015). Roary: rapid large-scale
prokaryote pan genome analysis. Bioinformatics, 31(22), 3691–3693.
https://doi.org/10.1093/BIOINFORMATICS/BTV421</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 3e9adf0

Please sign in to comment.