-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #5096 from openjournals/joss.06264
Merging automatically
- Loading branch information
Showing
3 changed files
with
975 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,373 @@ | ||
<?xml version="1.0" encoding="UTF-8"?> | ||
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1" | ||
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" | ||
xmlns:rel="http://www.crossref.org/relations.xsd" | ||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" | ||
version="5.3.1" | ||
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd"> | ||
<head> | ||
<doi_batch_id>20240306T173143-5195558cb2f517b68f83a032bf32550dcb69585c</doi_batch_id> | ||
<timestamp>20240306173143</timestamp> | ||
<depositor> | ||
<depositor_name>JOSS Admin</depositor_name> | ||
<email_address>[email protected]</email_address> | ||
</depositor> | ||
<registrant>The Open Journal</registrant> | ||
</head> | ||
<body> | ||
<journal> | ||
<journal_metadata> | ||
<full_title>Journal of Open Source Software</full_title> | ||
<abbrev_title>JOSS</abbrev_title> | ||
<issn media_type="electronic">2475-9066</issn> | ||
<doi_data> | ||
<doi>10.21105/joss</doi> | ||
<resource>https://joss.theoj.org</resource> | ||
</doi_data> | ||
</journal_metadata> | ||
<journal_issue> | ||
<publication_date media_type="online"> | ||
<month>03</month> | ||
<year>2024</year> | ||
</publication_date> | ||
<journal_volume> | ||
<volume>9</volume> | ||
</journal_volume> | ||
<issue>95</issue> | ||
</journal_issue> | ||
<journal_article publication_type="full_text"> | ||
<titles> | ||
<title>calorine: A Python package for constructing and | ||
sampling neuroevolution potential models</title> | ||
</titles> | ||
<contributors> | ||
<person_name sequence="first" contributor_role="author"> | ||
<given_name>Eric</given_name> | ||
<surname>Lindgren</surname> | ||
<ORCID>https://orcid.org/0000-0002-8549-6839</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Magnus</given_name> | ||
<surname>Rahm</surname> | ||
<ORCID>https://orcid.org/0000-0002-6777-0371</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Erik</given_name> | ||
<surname>Fransson</surname> | ||
<ORCID>https://orcid.org/0000-0001-5262-3339</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Fredrik</given_name> | ||
<surname>Eriksson</surname> | ||
<ORCID>https://orcid.org/0000-0002-7945-5483</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Nicklas</given_name> | ||
<surname>Österbacka</surname> | ||
<ORCID>https://orcid.org/0000-0002-6043-4607</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Zheyong</given_name> | ||
<surname>Fan</surname> | ||
<ORCID>https://orcid.org/0000-0002-2253-8210</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Paul</given_name> | ||
<surname>Erhart</surname> | ||
<ORCID>https://orcid.org/0000-0002-2516-6061</ORCID> | ||
</person_name> | ||
</contributors> | ||
<publication_date> | ||
<month>03</month> | ||
<day>06</day> | ||
<year>2024</year> | ||
</publication_date> | ||
<pages> | ||
<first_page>6264</first_page> | ||
</pages> | ||
<publisher_item> | ||
<identifier id_type="doi">10.21105/joss.06264</identifier> | ||
</publisher_item> | ||
<ai:program name="AccessIndicators"> | ||
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
</ai:program> | ||
<rel:program> | ||
<rel:related_item> | ||
<rel:description>Software archive</rel:description> | ||
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10723374</rel:inter_work_relation> | ||
</rel:related_item> | ||
<rel:related_item> | ||
<rel:description>GitHub review issue</rel:description> | ||
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6264</rel:inter_work_relation> | ||
</rel:related_item> | ||
</rel:program> | ||
<doi_data> | ||
<doi>10.21105/joss.06264</doi> | ||
<resource>https://joss.theoj.org/papers/10.21105/joss.06264</resource> | ||
<collection property="text-mining"> | ||
<item> | ||
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06264.pdf</resource> | ||
</item> | ||
</collection> | ||
</doi_data> | ||
<citation_list> | ||
<citation key="MüsSukPas23"> | ||
<article_title>Interatomic potentials: Achievements and | ||
challenges</article_title> | ||
<author>Müser</author> | ||
<journal_title>Advances in Physics: X</journal_title> | ||
<issue>1</issue> | ||
<volume>8</volume> | ||
<doi>10.1080/23746149.2022.2093129</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Müser, M. H., Sukhomlinov, S. V., | ||
& Pastewka, L. (2023). Interatomic potentials: Achievements and | ||
challenges. Advances in Physics: X, 8(1), 2093129. | ||
https://doi.org/10.1080/23746149.2022.2093129</unstructured_citation> | ||
</citation> | ||
<citation key="UnkChmSau21"> | ||
<article_title>Machine Learning Force Fields</article_title> | ||
<author>Unke</author> | ||
<journal_title>Chemical Reviews</journal_title> | ||
<issue>16</issue> | ||
<volume>121</volume> | ||
<doi>10.1021/acs.chemrev.0c01111</doi> | ||
<issn>0009-2665</issn> | ||
<cYear>2021</cYear> | ||
<unstructured_citation>Unke, O. T., Chmiela, S., Sauceda, H. | ||
E., Gastegger, M., Poltavsky, I., Schütt, K. T., Tkatchenko, A., & | ||
Müller, K.-R. (2021). Machine Learning Force Fields. Chemical Reviews, | ||
121(16), 10142–10186. | ||
https://doi.org/10.1021/acs.chemrev.0c01111</unstructured_citation> | ||
</citation> | ||
<citation key="FanZenZha21"> | ||
<article_title>Neuroevolution machine learning potentials: | ||
Combining high accuracy and low cost in atomistic simulations and | ||
application to heat transport</article_title> | ||
<author>Fan</author> | ||
<journal_title>Physical Review B</journal_title> | ||
<issue>10</issue> | ||
<volume>104</volume> | ||
<doi>10.1103/PhysRevB.104.104309</doi> | ||
<cYear>2021</cYear> | ||
<unstructured_citation>Fan, Z., Zeng, Z., Zhang, C., Wang, | ||
Y., Song, K., Dong, H., Chen, Y., & Ala-Nissila, T. (2021). | ||
Neuroevolution machine learning potentials: Combining high accuracy and | ||
low cost in atomistic simulations and application to heat transport. | ||
Physical Review B, 104(10), 104309. | ||
https://doi.org/10.1103/PhysRevB.104.104309</unstructured_citation> | ||
</citation> | ||
<citation key="Fan22"> | ||
<article_title>Improving the accuracy of the neuroevolution | ||
machine learning potential for multi-component systems</article_title> | ||
<author>Fan</author> | ||
<journal_title>Journal of Physics: Condensed | ||
Matter</journal_title> | ||
<issue>12</issue> | ||
<volume>34</volume> | ||
<doi>10.1088/1361-648X/ac462b</doi> | ||
<issn>0953-8984</issn> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Fan, Z. (2022). Improving the | ||
accuracy of the neuroevolution machine learning potential for | ||
multi-component systems. Journal of Physics: Condensed Matter, 34(12), | ||
125902. https://doi.org/10.1088/1361-648X/ac462b</unstructured_citation> | ||
</citation> | ||
<citation key="FanWanYin22"> | ||
<article_title>GPUMD: A package for constructing accurate | ||
machine-learned potentials and performing highly efficient atomistic | ||
simulations</article_title> | ||
<author>Fan</author> | ||
<journal_title>The Journal of Chemical | ||
Physics</journal_title> | ||
<issue>11</issue> | ||
<volume>157</volume> | ||
<doi>10.1063/5.0106617</doi> | ||
<issn>0021-9606</issn> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Fan, Z., Wang, Y., Ying, P., Song, | ||
K., Wang, J., Wang, Y., Zeng, Z., Xu, K., Lindgren, E., Rahm, J. M., | ||
Gabourie, A. J., Liu, J., Dong, H., Wu, J., Chen, Y., Zhong, Z., Sun, | ||
J., Erhart, P., Su, Y., & Ala-Nissila, T. (2022). GPUMD: A package | ||
for constructing accurate machine-learned potentials and performing | ||
highly efficient atomistic simulations. The Journal of Chemical Physics, | ||
157(11), 114801. | ||
https://doi.org/10.1063/5.0106617</unstructured_citation> | ||
</citation> | ||
<citation key="LiuBygFan23"> | ||
<article_title>Large-scale machine-learning molecular | ||
dynamics simulation of primary radiation damage in | ||
tungsten</article_title> | ||
<author>Liu</author> | ||
<journal_title>Physical Review B</journal_title> | ||
<issue>5</issue> | ||
<volume>108</volume> | ||
<doi>10.1103/PhysRevB.108.054312</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Liu, J., Byggmästar, J., Fan, Z., | ||
Qian, P., & Su, Y. (2023). Large-scale machine-learning molecular | ||
dynamics simulation of primary radiation damage in tungsten. Physical | ||
Review B, 108(5), 054312. | ||
https://doi.org/10.1103/PhysRevB.108.054312</unstructured_citation> | ||
</citation> | ||
<citation key="FraWikErh23"> | ||
<article_title>Phase transitions in inorganic halide | ||
perovskites from machine-learned potentials</article_title> | ||
<author>Fransson</author> | ||
<journal_title>The Journal of Physical Chemistry | ||
C</journal_title> | ||
<issue>28</issue> | ||
<volume>127</volume> | ||
<doi>10.1021/acs.jpcc.3c01542</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Fransson, E., Wiktor, J., & | ||
Erhart, P. (2023). Phase transitions in inorganic halide perovskites | ||
from machine-learned potentials. The Journal of Physical Chemistry C, | ||
127(28), 13773–13781. | ||
https://doi.org/10.1021/acs.jpcc.3c01542</unstructured_citation> | ||
</citation> | ||
<citation key="FraRosEri23"> | ||
<article_title>Limits of the phonon quasi-particle picture | ||
at the cubic-to-tetragonal phase transition in halide | ||
perovskites</article_title> | ||
<author>Fransson</author> | ||
<journal_title>Communications Physics</journal_title> | ||
<issue>1</issue> | ||
<volume>6</volume> | ||
<doi>10.1038/s42005-023-01297-8</doi> | ||
<issn>2399-3650</issn> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Fransson, E., Rosander, P., Eriksson, | ||
F., Rahm, J. M., Tadano, T., & Erhart, P. (2023). Limits of the | ||
phonon quasi-particle picture at the cubic-to-tetragonal phase | ||
transition in halide perovskites. Communications Physics, 6(1), 1–7. | ||
https://doi.org/10.1038/s42005-023-01297-8</unstructured_citation> | ||
</citation> | ||
<citation key="ShaDaiChe23"> | ||
<article_title>Phonon thermal transport in two-dimensional | ||
PbTe monolayers via extensive molecular dynamics simulations with a | ||
neuroevolution potential</article_title> | ||
<author>Sha</author> | ||
<journal_title>Materials Today Physics</journal_title> | ||
<volume>34</volume> | ||
<doi>10.1016/j.mtphys.2023.101066</doi> | ||
<issn>2542-5293</issn> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Sha, W., Dai, X., Chen, S., Yin, B., | ||
& Guo, F. (2023). Phonon thermal transport in two-dimensional PbTe | ||
monolayers via extensive molecular dynamics simulations with a | ||
neuroevolution potential. Materials Today Physics, 34, 101066. | ||
https://doi.org/10.1016/j.mtphys.2023.101066</unstructured_citation> | ||
</citation> | ||
<citation key="LarMorBlo17"> | ||
<article_title>The atomic simulation environmenta Python | ||
library for working with atoms</article_title> | ||
<author>Larsen</author> | ||
<journal_title>Journal of Physics: Condensed | ||
Matter</journal_title> | ||
<issue>27</issue> | ||
<volume>29</volume> | ||
<doi>10.1088/1361-648X/aa680e</doi> | ||
<issn>0953-8984</issn> | ||
<cYear>2017</cYear> | ||
<unstructured_citation>Larsen, A. H., Mortensen, J. J., | ||
Blomqvist, J., Castelli, I. E., Christensen, R., Dułak, M., Friis, J., | ||
Groves, M. N., Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C., | ||
Jensen, P. B., Kermode, J., Kitchin, J. R., Kolsbjerg, E. L., Kubal, J., | ||
Kaasbjerg, K., Lysgaard, S., … Jacobsen, K. W. (2017). The atomic | ||
simulation environmenta Python library for working with atoms. Journal | ||
of Physics: Condensed Matter, 29(27), 273002. | ||
https://doi.org/10.1088/1361-648X/aa680e</unstructured_citation> | ||
</citation> | ||
<citation key="EriFraErh19"> | ||
<article_title>The Hiphive Package for the Extraction of | ||
High-Order Force Constants by Machine Learning</article_title> | ||
<author>Eriksson</author> | ||
<journal_title>Advanced Theory and | ||
Simulations</journal_title> | ||
<issue>5</issue> | ||
<volume>2</volume> | ||
<doi>10.1002/adts.201800184</doi> | ||
<issn>2513-0390</issn> | ||
<cYear>2019</cYear> | ||
<unstructured_citation>Eriksson, F., Fransson, E., & | ||
Erhart, P. (2019). The Hiphive Package for the Extraction of High-Order | ||
Force Constants by Machine Learning. Advanced Theory and Simulations, | ||
2(5), 1800184. | ||
https://doi.org/10.1002/adts.201800184</unstructured_citation> | ||
</citation> | ||
<citation key="Tog23"> | ||
<article_title>First-principles Phonon Calculations with | ||
Phonopy and Phono3py</article_title> | ||
<author>Togo</author> | ||
<journal_title>Journal of the Physical Society of | ||
Japan</journal_title> | ||
<issue>1</issue> | ||
<volume>92</volume> | ||
<doi>10.7566/JPSJ.92.012001</doi> | ||
<issn>0031-9015</issn> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Togo, A. (2023). First-principles | ||
Phonon Calculations with Phonopy and Phono3py. Journal of the Physical | ||
Society of Japan, 92(1), 012001. | ||
https://doi.org/10.7566/JPSJ.92.012001</unstructured_citation> | ||
</citation> | ||
<citation key="TogChaTad23"> | ||
<article_title>Implementation strategies in phonopy and | ||
Phono3py</article_title> | ||
<author>Togo</author> | ||
<journal_title>Journal of Physics: Condensed | ||
Matter</journal_title> | ||
<issue>35</issue> | ||
<volume>35</volume> | ||
<doi>10.1088/1361-648X/acd831</doi> | ||
<issn>0953-8984</issn> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Togo, A., Chaput, L., Tadano, T., | ||
& Tanaka, I. (2023). Implementation strategies in phonopy and | ||
Phono3py. Journal of Physics: Condensed Matter, 35(35), 353001. | ||
https://doi.org/10.1088/1361-648X/acd831</unstructured_citation> | ||
</citation> | ||
<citation key="Wan23"> | ||
<article_title>PyNEP</article_title> | ||
<author>Wang</author> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Wang, J. (2023). PyNEP. | ||
https://pynep.readthedocs.io/en/latest/</unstructured_citation> | ||
</citation> | ||
<citation key="Gab23"> | ||
<article_title>Gpyumd</article_title> | ||
<author>Gabourie</author> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Gabourie, A. J. (2023). Gpyumd. | ||
https://gpyumd.readthedocs.io</unstructured_citation> | ||
</citation> | ||
<citation key="EriFraLin23"> | ||
<article_title>Tuning the through-plane lattice thermal | ||
conductivity in van der waals structures through rotational | ||
(dis)ordering</article_title> | ||
<author>Eriksson</author> | ||
<journal_title>ACS Nano</journal_title> | ||
<issue>24</issue> | ||
<volume>17</volume> | ||
<doi>10.1021/acsnano.3c09717</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Eriksson, F., Fransson, E., | ||
Linderälv, C., Fan, Z., & Erhart, P. (2023). Tuning the | ||
through-plane lattice thermal conductivity in van der waals structures | ||
through rotational (dis)ordering. ACS Nano, 17(24), 25565–25574. | ||
https://doi.org/10.1021/acsnano.3c09717</unstructured_citation> | ||
</citation> | ||
</citation_list> | ||
</journal_article> | ||
</journal> | ||
</body> | ||
</doi_batch> |
Oops, something went wrong.