-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #5125 from openjournals/joss.06326
Merging automatically
- Loading branch information
Showing
4 changed files
with
932 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,314 @@ | ||
<?xml version="1.0" encoding="UTF-8"?> | ||
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1" | ||
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" | ||
xmlns:rel="http://www.crossref.org/relations.xsd" | ||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" | ||
version="5.3.1" | ||
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd"> | ||
<head> | ||
<doi_batch_id>20240313T193609-27fc01c0bd885340c576af853ba600367661fecc</doi_batch_id> | ||
<timestamp>20240313193609</timestamp> | ||
<depositor> | ||
<depositor_name>JOSS Admin</depositor_name> | ||
<email_address>[email protected]</email_address> | ||
</depositor> | ||
<registrant>The Open Journal</registrant> | ||
</head> | ||
<body> | ||
<journal> | ||
<journal_metadata> | ||
<full_title>Journal of Open Source Software</full_title> | ||
<abbrev_title>JOSS</abbrev_title> | ||
<issn media_type="electronic">2475-9066</issn> | ||
<doi_data> | ||
<doi>10.21105/joss</doi> | ||
<resource>https://joss.theoj.org</resource> | ||
</doi_data> | ||
</journal_metadata> | ||
<journal_issue> | ||
<publication_date media_type="online"> | ||
<month>03</month> | ||
<year>2024</year> | ||
</publication_date> | ||
<journal_volume> | ||
<volume>9</volume> | ||
</journal_volume> | ||
<issue>95</issue> | ||
</journal_issue> | ||
<journal_article publication_type="full_text"> | ||
<titles> | ||
<title>PyProximal - scalable convex optimization in | ||
Python</title> | ||
</titles> | ||
<contributors> | ||
<person_name sequence="first" contributor_role="author"> | ||
<given_name>Matteo</given_name> | ||
<surname>Ravasi</surname> | ||
<ORCID>https://orcid.org/0000-0003-0020-2721</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Marcus Valtonen</given_name> | ||
<surname>Örnhag</surname> | ||
<ORCID>https://orcid.org/0000-0001-8687-227X</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Nick</given_name> | ||
<surname>Luiken</surname> | ||
<ORCID>https://orcid.org/0000-0003-3307-1748</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Olivier</given_name> | ||
<surname>Leblanc</surname> | ||
<ORCID>https://orcid.org/0000-0003-3641-1875</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Eneko</given_name> | ||
<surname>Uruñuela</surname> | ||
<ORCID>https://orcid.org/0000-0001-6849-9088</ORCID> | ||
</person_name> | ||
</contributors> | ||
<publication_date> | ||
<month>03</month> | ||
<day>13</day> | ||
<year>2024</year> | ||
</publication_date> | ||
<pages> | ||
<first_page>6326</first_page> | ||
</pages> | ||
<publisher_item> | ||
<identifier id_type="doi">10.21105/joss.06326</identifier> | ||
</publisher_item> | ||
<ai:program name="AccessIndicators"> | ||
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
</ai:program> | ||
<rel:program> | ||
<rel:related_item> | ||
<rel:description>Software archive</rel:description> | ||
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10805997</rel:inter_work_relation> | ||
</rel:related_item> | ||
<rel:related_item> | ||
<rel:description>GitHub review issue</rel:description> | ||
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6326</rel:inter_work_relation> | ||
</rel:related_item> | ||
</rel:program> | ||
<doi_data> | ||
<doi>10.21105/joss.06326</doi> | ||
<resource>https://joss.theoj.org/papers/10.21105/joss.06326</resource> | ||
<collection property="text-mining"> | ||
<item> | ||
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06326.pdf</resource> | ||
</item> | ||
</collection> | ||
</doi_data> | ||
<citation_list> | ||
<citation key="Ravasi:2020"> | ||
<article_title>PyLops - A linear-operator Python library for | ||
scalable algebra and optimization</article_title> | ||
<author>Ravasi</author> | ||
<journal_title>SoftwareX</journal_title> | ||
<volume>11</volume> | ||
<doi>10.1016/j.softx.2019.100361</doi> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Ravasi, M., & Vasconcelos, I. | ||
(2020). PyLops - A linear-operator Python library for scalable algebra | ||
and optimization. SoftwareX, 11. | ||
https://doi.org/10.1016/j.softx.2019.100361</unstructured_citation> | ||
</citation> | ||
<citation key="Parikh:2013"> | ||
<author>Parikh</author> | ||
<doi>10.1561/2400000003</doi> | ||
<cYear>2013</cYear> | ||
<unstructured_citation>Parikh, N. (2013). Foundations; | ||
Trends in Optimization. | ||
https://doi.org/10.1561/2400000003</unstructured_citation> | ||
</citation> | ||
<citation key="Combettes:2011"> | ||
<volume_title>Proximal splitting methods in signal | ||
processing</volume_title> | ||
<author>Combettes</author> | ||
<doi>10.1007/978-1-4419-9569-8_10</doi> | ||
<cYear>2011</cYear> | ||
<unstructured_citation>Combettes, P., & Pesquet, J.-C. | ||
(2011). Proximal splitting methods in signal processing. Springer | ||
Optimization; Its Applications. | ||
https://doi.org/10.1007/978-1-4419-9569-8_10</unstructured_citation> | ||
</citation> | ||
<citation key="Boyd:2011"> | ||
<article_title>Distributed optimization and statistical | ||
learning via the alternating direction method of | ||
multipliers</article_title> | ||
<author>Boyd</author> | ||
<journal_title>Foundations and Trends in Machine | ||
Learning</journal_title> | ||
<volume>3</volume> | ||
<doi>10.1561/2200000016</doi> | ||
<cYear>2011</cYear> | ||
<unstructured_citation>Boyd, S., Parikh, N., Chu, E., | ||
Peleato, B., & Eckstein, J. (2011). Distributed optimization and | ||
statistical learning via the alternating direction method of | ||
multipliers. Foundations and Trends in Machine Learning, 3. | ||
https://doi.org/10.1561/2200000016</unstructured_citation> | ||
</citation> | ||
<citation key="Chambolle:2011"> | ||
<article_title>A first-order primal-dual algorithm for | ||
convex problems with applications to imaging</article_title> | ||
<author>Chambolle</author> | ||
<journal_title>Journal of Mathematical Imaging and | ||
Vision</journal_title> | ||
<volume>40</volume> | ||
<doi>10.1007/s10851-010-0251-1</doi> | ||
<cYear>2011</cYear> | ||
<unstructured_citation>Chambolle, A., & Pock, T. (2011). | ||
A first-order primal-dual algorithm for convex problems with | ||
applications to imaging. Journal of Mathematical Imaging and Vision, 40. | ||
https://doi.org/10.1007/s10851-010-0251-1</unstructured_citation> | ||
</citation> | ||
<citation key="Ravasi:2022"> | ||
<article_title>A joint inversion-segmentation approach to | ||
assisted seismic interpretation</article_title> | ||
<author>Ravasi</author> | ||
<journal_title>Geophysical Journal | ||
International</journal_title> | ||
<volume>228</volume> | ||
<doi>10.1093/gji/ggab388</doi> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Ravasi, M., & Birnie, C. (2022). | ||
A joint inversion-segmentation approach to assisted seismic | ||
interpretation. Geophysical Journal International, 228. | ||
https://doi.org/10.1093/gji/ggab388</unstructured_citation> | ||
</citation> | ||
<citation key="Venkatakrishnan:2013"> | ||
<article_title>Plug-and-Play Priors for Model Based | ||
Reconstruction</article_title> | ||
<author>Venkatakrishnan</author> | ||
<journal_title>2013 IEEE Global Conference on Signal and | ||
Information Processing</journal_title> | ||
<doi>10.1109/GlobalSIP.2013.6737048</doi> | ||
<cYear>2013</cYear> | ||
<unstructured_citation>Venkatakrishnan, S. V., Bouman, C. | ||
A., & Wohlberg, B. (2013). Plug-and-Play Priors for Model Based | ||
Reconstruction. 2013 IEEE Global Conference on Signal and Information | ||
Processing. | ||
https://doi.org/10.1109/GlobalSIP.2013.6737048</unstructured_citation> | ||
</citation> | ||
<citation key="Romero:2023"> | ||
<article_title>Seeing through the CO2 plume: Joint | ||
inversion-segmentation of the Sleipner 4D seismic data | ||
set</article_title> | ||
<author>Romero</author> | ||
<journal_title>The Leading Edge</journal_title> | ||
<volume>42</volume> | ||
<doi>10.1190/tle42070457.1</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Romero, J., Luiken, N., & Ravasi, | ||
M. (2023). Seeing through the CO2 plume: Joint inversion-segmentation of | ||
the Sleipner 4D seismic data set. The Leading Edge, 42. | ||
https://doi.org/10.1190/tle42070457.1</unstructured_citation> | ||
</citation> | ||
<citation key="Romero:2022"> | ||
<article_title>Plug and Play Post-Stack Seismic Inversion | ||
with CNN-Based Denoisers</article_title> | ||
<author>Romero</author> | ||
<journal_title>Second EAGE Subsurface Intelligence | ||
Workshop</journal_title> | ||
<volume>1</volume> | ||
<doi>10.3997/2214-4609.2022616015</doi> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Romero, J., Luiken, M. C. N., & | ||
Ravasi, M. (2022). Plug and Play Post-Stack Seismic Inversion with | ||
CNN-Based Denoisers. Second EAGE Subsurface Intelligence Workshop, 1. | ||
https://doi.org/10.3997/2214-4609.2022616015</unstructured_citation> | ||
</citation> | ||
<citation key="Leblanc:2023"> | ||
<article_title>Interferometric Lensless Imaging: Rank-one | ||
Projections of Image Frequencies with Speckle | ||
Illuminations</article_title> | ||
<author>Leblanc</author> | ||
<journal_title>ArXiv e-prints</journal_title> | ||
<doi>10.1109/tci.2024.3359178</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Leblanc, O., Hofer, M., Sivankutty, | ||
S., Rigneault, H., & Jacques, L. (2023). Interferometric Lensless | ||
Imaging: Rank-one Projections of Image Frequencies with Speckle | ||
Illuminations. ArXiv e-Prints. | ||
https://doi.org/10.1109/tci.2024.3359178</unstructured_citation> | ||
</citation> | ||
<citation key="Ravasi:2021"> | ||
<article_title>Leveraging GPUs for matrix-free optimization | ||
with PyLops</article_title> | ||
<author>Ravasi</author> | ||
<journal_title>Fifth EAGE Workshop on High Performance | ||
Computing for Upstream</journal_title> | ||
<volume>1</volume> | ||
<doi>10.3997/2214-4609.2021612003</doi> | ||
<cYear>2021</cYear> | ||
<unstructured_citation>Ravasi, M. (2021). Leveraging GPUs | ||
for matrix-free optimization with PyLops. Fifth EAGE Workshop on High | ||
Performance Computing for Upstream, 1. | ||
https://doi.org/10.3997/2214-4609.2021612003</unstructured_citation> | ||
</citation> | ||
<citation key="Maheswaranathan"> | ||
<article_title>Proxalgs</article_title> | ||
<author>Maheswaranathan</author> | ||
<cYear>2019</cYear> | ||
<unstructured_citation>Maheswaranathan, N., Zapp, S., & | ||
Poole, B. (2019). Proxalgs. | ||
https://github.com/ganguli-lab/proxalgs/</unstructured_citation> | ||
</citation> | ||
<citation key="Melchior"> | ||
<article_title>Block-simultaneous direction method of | ||
multipliers: a proximal primal-dual splitting algorithm for nonconvex | ||
problems with multiple constraints</article_title> | ||
<author>Moolekamp</author> | ||
<journal_title>Optimization and Engineering</journal_title> | ||
<volume>19</volume> | ||
<doi>10.1007/s11081-018-9380-y</doi> | ||
<cYear>2018</cYear> | ||
<unstructured_citation>Moolekamp, F., & Melchior, P. | ||
(2018). Block-simultaneous direction method of multipliers: a proximal | ||
primal-dual splitting algorithm for nonconvex problems with multiple | ||
constraints. Optimization and Engineering, 19. | ||
https://doi.org/10.1007/s11081-018-9380-y</unstructured_citation> | ||
</citation> | ||
<citation key="Chierchia"> | ||
<article_title>The proximity operator | ||
repository</article_title> | ||
<author>Chierchia</author> | ||
<cYear>2024</cYear> | ||
<unstructured_citation>Chierchia, G., Chouzenoux, E., | ||
Combettes, P. L., & Pesquet, J.-C. (2024). The proximity operator | ||
repository. https://proximity-operator.net/</unstructured_citation> | ||
</citation> | ||
<citation key="pyxu-framework"> | ||
<article_title>Pyxu-org/pyxu: pyxu</article_title> | ||
<author>Simeoni</author> | ||
<doi>10.5281/zenodo.4486431</doi> | ||
<cYear>2024</cYear> | ||
<unstructured_citation>Simeoni, M., Kashani, S., | ||
Rué-Queralt, J., & Developers, P. (2024). Pyxu-org/pyxu: pyxu. | ||
Zenodo. https://doi.org/10.5281/zenodo.4486431</unstructured_citation> | ||
</citation> | ||
<citation key="Heide:2016"> | ||
<article_title>ProxImaL: Efficient image optimization using | ||
proximal algorithms</article_title> | ||
<author>Heide</author> | ||
<issue>4</issue> | ||
<volume>35</volume> | ||
<doi>10.1145/2897824.2925875</doi> | ||
<cYear>2016</cYear> | ||
<unstructured_citation>Heide, F., Diamond, S., Nießner, M., | ||
Ragan-Kelley, J., Heidrich, W., & Wetzstein, G. (2016). ProxImaL: | ||
Efficient image optimization using proximal algorithms. 35(4). | ||
https://doi.org/10.1145/2897824.2925875</unstructured_citation> | ||
</citation> | ||
</citation_list> | ||
</journal_article> | ||
</journal> | ||
</body> | ||
</doi_batch> |
Oops, something went wrong.