Skip to content

Commit

Permalink
Merge pull request #4842 from openjournals/joss.05662
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Dec 14, 2023
2 parents 5b9cdb6 + 57fa51d commit 304a404
Show file tree
Hide file tree
Showing 12 changed files with 757 additions and 0 deletions.
248 changes: 248 additions & 0 deletions joss.05662/10.21105.joss.05662.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,248 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20231214T170859-89b549088f864f514f5c9a60409b5445e3f1d4a3</doi_batch_id>
<timestamp>20231214170859</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>12</month>
<year>2023</year>
</publication_date>
<journal_volume>
<volume>8</volume>
</journal_volume>
<issue>92</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>PYDAQ: Data Acquisition and Experimental Analysis with
Python</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Samir Angelo Milani</given_name>
<surname>Martins</surname>
<ORCID>https://orcid.org/0000-0003-1702-8504</ORCID>
</person_name>
</contributors>
<publication_date>
<month>12</month>
<day>14</day>
<year>2023</year>
</publication_date>
<pages>
<first_page>5662</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05662</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10377251</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5662</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05662</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05662</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05662.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Lacerda2020">
<article_title>SysIdentPy: A Python package for system
identification using NARMAX models</article_title>
<author>Junior</author>
<journal_title>Journal of Open Source
Software</journal_title>
<issue>54</issue>
<volume>5</volume>
<doi>10.21105/joss.02384</doi>
<cYear>2020</cYear>
<unstructured_citation>Junior, W. R. L., Andrade, L. P. C.
da, Oliveira, S. C. P., &amp; Martins, S. A. M. (2020). SysIdentPy: A
Python package for system identification using NARMAX models. Journal of
Open Source Software, 5(54), 2384.
https://doi.org/10.21105/joss.02384</unstructured_citation>
</citation>
<citation key="Lju1987">
<volume_title>System identification: Theory for the
user</volume_title>
<author>Ljung</author>
<isbn>0-13-656695-2</isbn>
<cYear>1999</cYear>
<unstructured_citation>Ljung, L. (1999). System
identification: Theory for the user (2nd ed.). Prentice-Hall.
ISBN: 0-13-656695-2</unstructured_citation>
</citation>
<citation key="Bil2013">
<volume_title>Nonlinear system identification: NARMAX
methods in the time, frequency, and spatio-temporal
domains</volume_title>
<author>Billings</author>
<doi>10.1002/9781118535561</doi>
<cYear>2013</cYear>
<unstructured_citation>Billings, S. A. (2013). Nonlinear
system identification: NARMAX methods in the time, frequency, and
spatio-temporal domains (p. 574). John Wiley &amp; Sons.
https://doi.org/10.1002/9781118535561</unstructured_citation>
</citation>
<citation key="Silva_2018">
<article_title>Graphical interface as a teaching aid for
nonlinear dynamical systems</article_title>
<author>Silva</author>
<journal_title>European Journal of Physics</journal_title>
<issue>6</issue>
<volume>39</volume>
<doi>10.1088/1361-6404/aae35c</doi>
<cYear>2018</cYear>
<unstructured_citation>Silva, P. H. O., Nardo, L. G.,
Martins, S. A. M., Nepomuceno, E. G., &amp; Perc, M. (2018). Graphical
interface as a teaching aid for nonlinear dynamical systems. European
Journal of Physics, 39(6), 065105.
https://doi.org/10.1088/1361-6404/aae35c</unstructured_citation>
</citation>
<citation key="Ostrovskii2020">
<article_title>Temperature as a chaotic circuit bifurcation
parameter</article_title>
<author>Ostrovskii</author>
<journal_title>2020 IEEE conference of russian young
researchers in electrical and electronic engineering
(EIConRus)</journal_title>
<doi>10.1109/EIConRus49466.2020.9038964</doi>
<cYear>2020</cYear>
<unstructured_citation>Ostrovskii, V. Y., Nazare, T. E.,
Martins, S. A. M., &amp; Nepomuceno, E. G. (2020). Temperature as a
chaotic circuit bifurcation parameter. 2020 IEEE Conference of Russian
Young Researchers in Electrical and Electronic Engineering (EIConRus),
154–157.
https://doi.org/10.1109/EIConRus49466.2020.9038964</unstructured_citation>
</citation>
<citation key="ayala2020r">
<article_title>An R library for nonlinear black-box system
identification</article_title>
<author>Ayala</author>
<journal_title>SoftwareX</journal_title>
<volume>11</volume>
<doi>10.1016/j.softx.2020.100495</doi>
<cYear>2020</cYear>
<unstructured_citation>Ayala, H. V. H., Gritti, M. C., &amp;
Santos Coelho, L. dos. (2020). An R library for nonlinear black-box
system identification. SoftwareX, 11, 100495.
https://doi.org/10.1016/j.softx.2020.100495</unstructured_citation>
</citation>
<citation key="WMNL2019">
<article_title>Control of hysteretic systems through an
analytical inverse compensation based on a NARX model</article_title>
<author>Lacerda Junior</author>
<journal_title>IEEE Access</journal_title>
<volume>7</volume>
<doi>10.1109/access.2019.2926057</doi>
<cYear>2019</cYear>
<unstructured_citation>Lacerda Junior, W. R., Martins, S. A.
M., Nepomuceno, E. G., &amp; Lacerda, M. J. (2019). Control of
hysteretic systems through an analytical inverse compensation based on a
NARX model. IEEE Access, 7, 98228–98237.
https://doi.org/10.1109/access.2019.2926057</unstructured_citation>
</citation>
<citation key="MA2016">
<article_title>Sufficient conditions for rate-independent
hysteresis in autoregressive identified models</article_title>
<author>Martins</author>
<journal_title>Mechanical Systems and Signal
Processing</journal_title>
<volume>75</volume>
<doi>10.1016/j.ymssp.2015.12.031</doi>
<cYear>2016</cYear>
<unstructured_citation>Martins, S. A. M., &amp; Aguirre, L.
A. (2016). Sufficient conditions for rate-independent hysteresis in
autoregressive identified models. Mechanical Systems and Signal
Processing, 75, 607–617.
https://doi.org/10.1016/j.ymssp.2015.12.031</unstructured_citation>
</citation>
<citation key="Yang2019">
<article_title>Design and implementation of data acquisition
system based on Scrapy technology</article_title>
<author>Yang</author>
<journal_title>2019 2nd international conference on safety
produce informatization (IICSPI)</journal_title>
<doi>10.1109/IICSPI48186.2019.9096044</doi>
<cYear>2019</cYear>
<unstructured_citation>Yang, H. (2019). Design and
implementation of data acquisition system based on Scrapy technology.
2019 2nd International Conference on Safety Produce Informatization
(IICSPI), 417–420.
https://doi.org/10.1109/IICSPI48186.2019.9096044</unstructured_citation>
</citation>
<citation key="Koerner2020">
<article_title>A Python instrument control and data
acquisition suite for reproducible research</article_title>
<author>Koerner</author>
<journal_title>IEEE Transactions on Instrumentation and
Measurement</journal_title>
<issue>4</issue>
<volume>69</volume>
<doi>10.1109/TIM.2019.2914711</doi>
<cYear>2020</cYear>
<unstructured_citation>Koerner, L. J., Caswell, T. A.,
Allan, D. B., &amp; Campbell, S. I. (2020). A Python instrument control
and data acquisition suite for reproducible research. IEEE Transactions
on Instrumentation and Measurement, 69(4), 1698–1707.
https://doi.org/10.1109/TIM.2019.2914711</unstructured_citation>
</citation>
<citation key="scikit-learn">
<article_title>Scikit-learn: Machine learning in
Python</article_title>
<author>Pedregosa</author>
<journal_title>Journal of Machine Learning
Research</journal_title>
<volume>12</volume>
<doi>10.48550/arXiv.1201.0490</doi>
<cYear>2011</cYear>
<unstructured_citation>Pedregosa, F., Varoquaux, G.,
Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., &amp; Duchesnay, E. (2011).
Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12, 2825–2830.
https://doi.org/10.48550/arXiv.1201.0490</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 304a404

Please sign in to comment.