Skip to content

Commit

Permalink
Merge pull request #5521 from openjournals/joss.06532
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jun 21, 2024
2 parents 5b2d1a3 + 4ddb0ab commit 2d4e690
Show file tree
Hide file tree
Showing 3 changed files with 949 additions and 0 deletions.
237 changes: 237 additions & 0 deletions joss.06532/10.21105.joss.06532.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,237 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240621125246-b19c5a11e8d035afc239c96151c5cf324067c3fe</doi_batch_id>
<timestamp>20240621125246</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>06</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>98</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>JAXbind: Bind any function to JAX</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Jakob</given_name>
<surname>Roth</surname>
<ORCID>https://orcid.org/0000-0002-8873-8215</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Martin</given_name>
<surname>Reinecke</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Gordian</given_name>
<surname>Edenhofer</surname>
<ORCID>https://orcid.org/0000-0003-3122-4894</ORCID>
</person_name>
</contributors>
<publication_date>
<month>06</month>
<day>21</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6532</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06532</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.12191214</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6532</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06532</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06532</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06532.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Jax2018">
<article_title>JAX: Composable transformations of
Python+NumPy programs</article_title>
<author>Bradbury</author>
<cYear>2018</cYear>
<unstructured_citation>Bradbury, J., Frostig, R., Hawkins,
P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A.,
VanderPlas, J., Wanderman-Milne, S., &amp; Zhang, Q. (2018). JAX:
Composable transformations of Python+NumPy programs (Version 0.3.13).
http://github.com/google/jax</unstructured_citation>
</citation>
<citation key="ducc0">
<article_title>DUCC: Distinctly useful code
collection</article_title>
<author>Reinecke</author>
<cYear>2024</cYear>
<unstructured_citation>Reinecke, M. (2024). DUCC: Distinctly
useful code collection (Version 0.33.0).
https://gitlab.mpcdf.mpg.de/mtr/ducc</unstructured_citation>
</citation>
<citation key="Moses2024">
<article_title>Enzyme-JAX</article_title>
<author>Moses</author>
<cYear>2024</cYear>
<unstructured_citation>Moses, W. S., &amp; Zinenko, O.
(2024). Enzyme-JAX (Version 0.0.6).
https://github.com/EnzymeAD/Enzyme-JAX</unstructured_citation>
</citation>
<citation key="Moses2020">
<article_title>Instead of rewriting foreign code for machine
learning, automatically synthesize fast gradients</article_title>
<author>Moses</author>
<journal_title>Advances in neural information processing
systems</journal_title>
<volume>33</volume>
<cYear>2020</cYear>
<unstructured_citation>Moses, W., &amp; Churavy, V. (2020).
Instead of rewriting foreign code for machine learning, automatically
synthesize fast gradients. In H. Larochelle, M. Ranzato, R. Hadsell, M.
F. Balcan, &amp; H. Lin (Eds.), Advances in neural information
processing systems (Vol. 33, pp. 12472–12485). Curran Associates, Inc.
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf</unstructured_citation>
</citation>
<citation key="Moses2021">
<article_title>Reverse-mode automatic differentiation and
optimization of GPU kernels via enzyme</article_title>
<author>Moses</author>
<journal_title>Proceedings of the international conference
for high performance computing, networking, storage and
analysis</journal_title>
<doi>10.1145/3458817.3476165</doi>
<isbn>9781450384421</isbn>
<cYear>2021</cYear>
<unstructured_citation>Moses, W. S., Churavy, V., Paehler,
L., Hückelheim, J., Narayanan, S. H. K., Schanen, M., &amp; Doerfert, J.
(2021). Reverse-mode automatic differentiation and optimization of GPU
kernels via enzyme. Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis.
https://doi.org/10.1145/3458817.3476165</unstructured_citation>
</citation>
<citation key="Moses2022">
<article_title>Scalable automatic differentiation of
multiple parallel paradigms through compiler
augmentation</article_title>
<author>Moses</author>
<journal_title>Proceedings of the international conference
on high performance computing, networking, storage and
analysis</journal_title>
<doi>10.1109/SC41404.2022.00065</doi>
<isbn>9784665454445</isbn>
<cYear>2022</cYear>
<unstructured_citation>Moses, W. S., Narayanan, S. H. K.,
Paehler, L., Churavy, V., Schanen, M., Hückelheim, J., Doerfert, J.,
&amp; Hovland, P. (2022). Scalable automatic differentiation of multiple
parallel paradigms through compiler augmentation. Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis.
https://doi.org/10.1109/SC41404.2022.00065</unstructured_citation>
</citation>
<citation key="Resolve2024">
<article_title>RESOLVE</article_title>
<author>Arras</author>
<cYear>2024</cYear>
<unstructured_citation>Arras, P., Roth, J., Ding, S.,
Reinecke, M., Fuchs, R., &amp; Johnson, V. (2024). RESOLVE.
https://gitlab.mpcdf.mpg.de/ift/resolve</unstructured_citation>
</citation>
<citation key="Edenhofer2023NIFTyRE">
<article_title>Re-envisioning numerical information field
theory (NIFTy.re): A library for Gaussian processes and variational
inference</article_title>
<author>Edenhofer</author>
<journal_title>Journal of Open Source
Software</journal_title>
<issue>98</issue>
<volume>9</volume>
<doi>10.21105/joss.06593</doi>
<cYear>2024</cYear>
<unstructured_citation>Edenhofer, G., Frank, P., Roth, J.,
Leike, R. H., Guerdi, M., Scheel-Platz, L. I., Guardiani, M., Eberle,
V., Westerkamp, M., &amp; Enßlin, T. A. (2024). Re-envisioning numerical
information field theory (NIFTy.re): A library for Gaussian processes
and variational inference. Journal of Open Source Software, 9(98), 6593.
https://doi.org/10.21105/joss.06593</unstructured_citation>
</citation>
<citation key="tensorflow2015">
<article_title>TensorFlow: Large-scale machine learning on
heterogeneous systems</article_title>
<author>Abadi</author>
<cYear>2015</cYear>
<unstructured_citation>Abadi, M., Agarwal, A., Barham, P.,
Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems.
https://www.tensorflow.org/</unstructured_citation>
</citation>
<citation key="PyTorch2024">
<article_title>PyTorch 2: Faster machine learning through
dynamic Python bytecode transformation and graph
compilation</article_title>
<author>Ansel</author>
<journal_title>29th ACM international conference on
architectural support for programming languages and operating systems,
volume 2 (ASPLOS ’24)</journal_title>
<doi>10.1145/3620665.3640366</doi>
<cYear>2024</cYear>
<unstructured_citation>Ansel, J., Yang, E., He, H.,
Gimelshein, N., Jain, A., Voznesensky, M., Bao, B., Bell, P., Berard,
D., Burovski, E., Chauhan, G., Chourdia, A., Constable, W., Desmaison,
A., DeVito, Z., Ellison, E., Feng, W., Gong, J., Gschwind, M., …
Chintala, S. (2024, April). PyTorch 2: Faster machine learning through
dynamic Python bytecode transformation and graph compilation. 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS ’24).
https://doi.org/10.1145/3620665.3640366</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06532/10.21105.joss.06532.pdf
Binary file not shown.
Loading

0 comments on commit 2d4e690

Please sign in to comment.