-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #4731 from openjournals/joss.05526
Merging automatically
- Loading branch information
Showing
3 changed files
with
330 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
<?xml version="1.0" encoding="UTF-8"?> | ||
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1" | ||
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" | ||
xmlns:rel="http://www.crossref.org/relations.xsd" | ||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" | ||
version="5.3.1" | ||
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd"> | ||
<head> | ||
<doi_batch_id>20231027T152702-6b31c6c3ff40395d9344251e153aca6151b6f56c</doi_batch_id> | ||
<timestamp>20231027152702</timestamp> | ||
<depositor> | ||
<depositor_name>JOSS Admin</depositor_name> | ||
<email_address>[email protected]</email_address> | ||
</depositor> | ||
<registrant>The Open Journal</registrant> | ||
</head> | ||
<body> | ||
<journal> | ||
<journal_metadata> | ||
<full_title>Journal of Open Source Software</full_title> | ||
<abbrev_title>JOSS</abbrev_title> | ||
<issn media_type="electronic">2475-9066</issn> | ||
<doi_data> | ||
<doi>10.21105/joss</doi> | ||
<resource>https://joss.theoj.org</resource> | ||
</doi_data> | ||
</journal_metadata> | ||
<journal_issue> | ||
<publication_date media_type="online"> | ||
<month>10</month> | ||
<year>2023</year> | ||
</publication_date> | ||
<journal_volume> | ||
<volume>8</volume> | ||
</journal_volume> | ||
<issue>90</issue> | ||
</journal_issue> | ||
<journal_article publication_type="full_text"> | ||
<titles> | ||
<title>bayes-toolbox: A Python package for Bayesian | ||
statistics</title> | ||
</titles> | ||
<contributors> | ||
<person_name sequence="first" contributor_role="author"> | ||
<given_name>Hyosub E.</given_name> | ||
<surname>Kim</surname> | ||
<ORCID>https://orcid.org/0000-0003-0109-593X</ORCID> | ||
</person_name> | ||
</contributors> | ||
<publication_date> | ||
<month>10</month> | ||
<day>27</day> | ||
<year>2023</year> | ||
</publication_date> | ||
<pages> | ||
<first_page>5526</first_page> | ||
</pages> | ||
<publisher_item> | ||
<identifier id_type="doi">10.21105/joss.05526</identifier> | ||
</publisher_item> | ||
<ai:program name="AccessIndicators"> | ||
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
</ai:program> | ||
<rel:program> | ||
<rel:related_item> | ||
<rel:description>Software archive</rel:description> | ||
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.7849408</rel:inter_work_relation> | ||
</rel:related_item> | ||
<rel:related_item> | ||
<rel:description>GitHub review issue</rel:description> | ||
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5526</rel:inter_work_relation> | ||
</rel:related_item> | ||
</rel:program> | ||
<doi_data> | ||
<doi>10.21105/joss.05526</doi> | ||
<resource>https://joss.theoj.org/papers/10.21105/joss.05526</resource> | ||
<collection property="text-mining"> | ||
<item> | ||
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05526.pdf</resource> | ||
</item> | ||
</collection> | ||
</doi_data> | ||
<citation_list> | ||
<citation key="patil2010pymc"> | ||
<article_title>PyMC: Bayesian Stochastic Modelling in | ||
Python</article_title> | ||
<author>Patil</author> | ||
<journal_title>Journal of Statistical | ||
Software</journal_title> | ||
<issue>4</issue> | ||
<volume>35</volume> | ||
<doi>10.18637/jss.v035.i04</doi> | ||
<cYear>2010</cYear> | ||
<unstructured_citation>Patil, A., Huard, D., & | ||
Fonnesbeck, C. J. (2010). PyMC: Bayesian Stochastic Modelling in Python. | ||
Journal of Statistical Software, 35(4), 1. | ||
https://doi.org/10.18637/jss.v035.i04</unstructured_citation> | ||
</citation> | ||
<citation key="kruschke2014doing"> | ||
<volume_title>Doing Bayesian Data Analysis: A Tutorial with | ||
R, JAGS, and Stan</volume_title> | ||
<author>Kruschke</author> | ||
<doi>10.1016/c2012-0-00477-2</doi> | ||
<cYear>2014</cYear> | ||
<unstructured_citation>Kruschke, J. (2014). Doing Bayesian | ||
Data Analysis: A Tutorial with R, JAGS, and Stan. Academic Press. | ||
https://doi.org/10.1016/c2012-0-00477-2</unstructured_citation> | ||
</citation> | ||
<citation key="wilson2017good"> | ||
<article_title>Good enough practices in scientific | ||
computing</article_title> | ||
<author>Wilson</author> | ||
<journal_title>PLoS computational biology</journal_title> | ||
<issue>6</issue> | ||
<volume>13</volume> | ||
<doi>10.1371/journal.pcbi.1005510</doi> | ||
<cYear>2017</cYear> | ||
<unstructured_citation>Wilson, G., Bryan, J., Cranston, K., | ||
Kitzes, J., Nederbragt, L., & Teal, T. K. (2017). Good enough | ||
practices in scientific computing. PLoS Computational Biology, 13(6), | ||
e1005510. | ||
https://doi.org/10.1371/journal.pcbi.1005510</unstructured_citation> | ||
</citation> | ||
</citation_list> | ||
</journal_article> | ||
</journal> | ||
</body> | ||
</doi_batch> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,200 @@ | ||
<?xml version="1.0" encoding="utf-8" ?> | ||
<!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.2 20190208//EN" | ||
"JATS-publishing1.dtd"> | ||
<article xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" dtd-version="1.2" article-type="other"> | ||
<front> | ||
<journal-meta> | ||
<journal-id></journal-id> | ||
<journal-title-group> | ||
<journal-title>Journal of Open Source Software</journal-title> | ||
<abbrev-journal-title>JOSS</abbrev-journal-title> | ||
</journal-title-group> | ||
<issn publication-format="electronic">2475-9066</issn> | ||
<publisher> | ||
<publisher-name>Open Journals</publisher-name> | ||
</publisher> | ||
</journal-meta> | ||
<article-meta> | ||
<article-id pub-id-type="publisher-id">5526</article-id> | ||
<article-id pub-id-type="doi">10.21105/joss.05526</article-id> | ||
<title-group> | ||
<article-title>bayes-toolbox: A Python package for Bayesian | ||
statistics</article-title> | ||
</title-group> | ||
<contrib-group> | ||
<contrib contrib-type="author"> | ||
<contrib-id contrib-id-type="orcid">https://orcid.org/0000-0003-0109-593X</contrib-id> | ||
<name> | ||
<surname>Kim</surname> | ||
<given-names>Hyosub E.</given-names> | ||
</name> | ||
<xref ref-type="aff" rid="aff-1"/> | ||
<xref ref-type="aff" rid="aff-2"/> | ||
</contrib> | ||
<aff id="aff-1"> | ||
<institution-wrap> | ||
<institution>School of Kinesiology, The University of British Columbia, | ||
Canada</institution> | ||
</institution-wrap> | ||
</aff> | ||
<aff id="aff-2"> | ||
<institution-wrap> | ||
<institution>Department of Physical Therapy, University of Delaware, | ||
United States</institution> | ||
</institution-wrap> | ||
</aff> | ||
</contrib-group> | ||
<pub-date date-type="pub" publication-format="electronic" iso-8601-date="2023-04-22"> | ||
<day>22</day> | ||
<month>4</month> | ||
<year>2023</year> | ||
</pub-date> | ||
<volume>8</volume> | ||
<issue>90</issue> | ||
<fpage>5526</fpage> | ||
<permissions> | ||
<copyright-statement>Authors of papers retain copyright and release the | ||
work under a Creative Commons Attribution 4.0 International License (CC | ||
BY 4.0)</copyright-statement> | ||
<copyright-year>2022</copyright-year> | ||
<copyright-holder>The article authors</copyright-holder> | ||
<license license-type="open-access" xlink:href="https://creativecommons.org/licenses/by/4.0/"> | ||
<license-p>Authors of papers retain copyright and release the work under | ||
a Creative Commons Attribution 4.0 International License (CC BY | ||
4.0)</license-p> | ||
</license> | ||
</permissions> | ||
<kwd-group kwd-group-type="author"> | ||
<kwd>Python</kwd> | ||
<kwd>Bayesian statistics</kwd> | ||
<kwd>psychology</kwd> | ||
<kwd>neuroscience</kwd> | ||
</kwd-group> | ||
</article-meta> | ||
</front> | ||
<body> | ||
<sec id="summary"> | ||
<title>Summary</title> | ||
<p><monospace>bayes-toolbox</monospace> is a Python package intended | ||
to facilitate the increased use and adoption of Bayesian statistics in | ||
scientific research. As Python is one of the fastest growing and most | ||
widely used programming languages, | ||
<monospace>bayes-toolbox</monospace> fills the need for a Python | ||
library that makes it as easy to perform Bayesian statistical tests as | ||
it currently is to perform their “frequentist” counterparts. The | ||
intended users of <monospace>bayes-toolbox</monospace> are students | ||
and researchers, particularly those in the behavioral and neural | ||
sciences, who are looking for a low friction way to learn Bayesian | ||
statistics and incorporate it into their research.</p> | ||
</sec> | ||
<sec id="statement-of-need"> | ||
<title>Statement of need</title> | ||
<p>Currently, Python users can choose between several packages that | ||
provide simple-to-use functions for running classical/frequentist | ||
statistical tests (e.g., | ||
<ext-link ext-link-type="uri" xlink:href="https://pingouin-stats.org/build/html/index.html#">Pingouin</ext-link>, | ||
<ext-link ext-link-type="uri" xlink:href="https://scipy.org/">SciPy</ext-link>, | ||
<ext-link ext-link-type="uri" xlink:href="https://pandas.pydata.org/">pandas</ext-link>, | ||
and | ||
<ext-link ext-link-type="uri" xlink:href="https://www.statsmodels.org/stable/index.html">statsmodels</ext-link>). | ||
In contrast, for Bayesian statistics there has only been the excellent | ||
<ext-link ext-link-type="uri" xlink:href="https://bambinos.github.io/bambi/">Bambi</ext-link> | ||
package, which, while quite powerful and robust, does require more | ||
advanced knowledge and familiarity with | ||
<ext-link ext-link-type="uri" xlink:href="https://cran.r-project.org/web/packages/brms/index.html">R-brms</ext-link> | ||
syntax. Therefore, the goal of <monospace>bayes-toolbox</monospace> is | ||
to fill an important gap in the Python-Bayesian community, by | ||
providing an easy-to-use module for less experienced users that makes | ||
it as simple, in Python, to fit a Bayesian model to data as it is to | ||
run a frequentist statistical test. As all of the models (tests) are | ||
executable with single functions, they are ideal for use in an open, | ||
replicable workflow | ||
(<xref alt="Wilson et al., 2017" rid="ref-wilson2017good" ref-type="bibr">Wilson | ||
et al., 2017</xref>).</p> | ||
<p><monospace>bayes-toolbox</monospace> is a Python package that makes | ||
performing such Bayesian analyses simple and straight forward. By | ||
leveraging PyMC, a probabilistic programming library written in Python | ||
(<xref alt="Patil et al., 2010" rid="ref-patil2010pymc" ref-type="bibr">Patil | ||
et al., 2010</xref>), and providing easy-to-use functions, | ||
<monospace>bayes-toolbox</monospace> removes many of the technical | ||
barriers previously associated with Bayesian analyses, especially for | ||
users who would prefer to work with Python over other programming | ||
languages (e.g., R). This package also removes the requirement to | ||
include model formulas to perform statistical tests, another potential | ||
barrier for end users. And as the <monospace>bayes-toolbox</monospace> | ||
functions provide Bayesian analogues of many of the most common | ||
classical tests used by scientists, including t-tests, ANOVAs, and | ||
regression models, as well as hierarchical (multi-level) models and | ||
meta-analyses, it provides a much needed bridge for researchers who | ||
are familiar with frequentist statistics but wish to explore the | ||
Bayesian framework.</p> | ||
<p><monospace>bayes-toolbox</monospace> was designed for and targeted | ||
to researchers primarily in the behavioral and neural sciences. | ||
However, as many of the models and Jupyter notebook tutorials included | ||
in the public <monospace>bayes-toolbox</monospace> repository are | ||
adapted from the well-known textbook “Doing Bayesian Data Analysis” | ||
(<xref alt="Kruschke, 2014" rid="ref-kruschke2014doing" ref-type="bibr">Kruschke, | ||
2014</xref>), <monospace>bayes-toolbox</monospace> can also serve as | ||
an important pedagogical tool for students and researchers alike.</p> | ||
</sec> | ||
<sec id="acknowledgements"> | ||
<title>Acknowledgements</title> | ||
<p>Thank you to the PyMC developers, John Kruschke, and Jordi | ||
Warmenhoven for generously sharing your work and knowledge.</p> | ||
</sec> | ||
</body> | ||
<back> | ||
<ref-list> | ||
<ref id="ref-patil2010pymc"> | ||
<element-citation publication-type="article-journal"> | ||
<person-group person-group-type="author"> | ||
<name><surname>Patil</surname><given-names>Anand</given-names></name> | ||
<name><surname>Huard</surname><given-names>David</given-names></name> | ||
<name><surname>Fonnesbeck</surname><given-names>Christopher J</given-names></name> | ||
</person-group> | ||
<article-title>PyMC: Bayesian Stochastic Modelling in Python</article-title> | ||
<source>Journal of Statistical Software</source> | ||
<publisher-name>Europe PMC Funders</publisher-name> | ||
<year iso-8601-date="2010">2010</year> | ||
<volume>35</volume> | ||
<issue>4</issue> | ||
<pub-id pub-id-type="doi">10.18637/jss.v035.i04</pub-id> | ||
<fpage>1</fpage> | ||
<lpage></lpage> | ||
</element-citation> | ||
</ref> | ||
<ref id="ref-kruschke2014doing"> | ||
<element-citation publication-type="book"> | ||
<person-group person-group-type="author"> | ||
<name><surname>Kruschke</surname><given-names>John</given-names></name> | ||
</person-group> | ||
<source>Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan</source> | ||
<publisher-name>Academic Press</publisher-name> | ||
<year iso-8601-date="2014">2014</year> | ||
<pub-id pub-id-type="doi">10.1016/c2012-0-00477-2</pub-id> | ||
</element-citation> | ||
</ref> | ||
<ref id="ref-wilson2017good"> | ||
<element-citation publication-type="article-journal"> | ||
<person-group person-group-type="author"> | ||
<name><surname>Wilson</surname><given-names>Greg</given-names></name> | ||
<name><surname>Bryan</surname><given-names>Jennifer</given-names></name> | ||
<name><surname>Cranston</surname><given-names>Karen</given-names></name> | ||
<name><surname>Kitzes</surname><given-names>Justin</given-names></name> | ||
<name><surname>Nederbragt</surname><given-names>Lex</given-names></name> | ||
<name><surname>Teal</surname><given-names>Tracy K</given-names></name> | ||
</person-group> | ||
<article-title>Good enough practices in scientific computing</article-title> | ||
<source>PLoS computational biology</source> | ||
<publisher-name>Public Library of Science</publisher-name> | ||
<year iso-8601-date="2017">2017</year> | ||
<volume>13</volume> | ||
<issue>6</issue> | ||
<pub-id pub-id-type="doi">10.1371/journal.pcbi.1005510</pub-id> | ||
<fpage>e1005510</fpage> | ||
<lpage></lpage> | ||
</element-citation> | ||
</ref> | ||
</ref-list> | ||
</back> | ||
</article> |
Binary file not shown.