Skip to content

Commit

Permalink
Merge pull request #4731 from openjournals/joss.05526
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Oct 27, 2023
2 parents fe15422 + 32f646a commit 28cbafc
Show file tree
Hide file tree
Showing 3 changed files with 330 additions and 0 deletions.
130 changes: 130 additions & 0 deletions joss.05526/10.21105.joss.05526.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20231027T152702-6b31c6c3ff40395d9344251e153aca6151b6f56c</doi_batch_id>
<timestamp>20231027152702</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>10</month>
<year>2023</year>
</publication_date>
<journal_volume>
<volume>8</volume>
</journal_volume>
<issue>90</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>bayes-toolbox: A Python package for Bayesian
statistics</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Hyosub E.</given_name>
<surname>Kim</surname>
<ORCID>https://orcid.org/0000-0003-0109-593X</ORCID>
</person_name>
</contributors>
<publication_date>
<month>10</month>
<day>27</day>
<year>2023</year>
</publication_date>
<pages>
<first_page>5526</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05526</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.7849408</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5526</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05526</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05526</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05526.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="patil2010pymc">
<article_title>PyMC: Bayesian Stochastic Modelling in
Python</article_title>
<author>Patil</author>
<journal_title>Journal of Statistical
Software</journal_title>
<issue>4</issue>
<volume>35</volume>
<doi>10.18637/jss.v035.i04</doi>
<cYear>2010</cYear>
<unstructured_citation>Patil, A., Huard, D., &amp;
Fonnesbeck, C. J. (2010). PyMC: Bayesian Stochastic Modelling in Python.
Journal of Statistical Software, 35(4), 1.
https://doi.org/10.18637/jss.v035.i04</unstructured_citation>
</citation>
<citation key="kruschke2014doing">
<volume_title>Doing Bayesian Data Analysis: A Tutorial with
R, JAGS, and Stan</volume_title>
<author>Kruschke</author>
<doi>10.1016/c2012-0-00477-2</doi>
<cYear>2014</cYear>
<unstructured_citation>Kruschke, J. (2014). Doing Bayesian
Data Analysis: A Tutorial with R, JAGS, and Stan. Academic Press.
https://doi.org/10.1016/c2012-0-00477-2</unstructured_citation>
</citation>
<citation key="wilson2017good">
<article_title>Good enough practices in scientific
computing</article_title>
<author>Wilson</author>
<journal_title>PLoS computational biology</journal_title>
<issue>6</issue>
<volume>13</volume>
<doi>10.1371/journal.pcbi.1005510</doi>
<cYear>2017</cYear>
<unstructured_citation>Wilson, G., Bryan, J., Cranston, K.,
Kitzes, J., Nederbragt, L., &amp; Teal, T. K. (2017). Good enough
practices in scientific computing. PLoS Computational Biology, 13(6),
e1005510.
https://doi.org/10.1371/journal.pcbi.1005510</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
200 changes: 200 additions & 0 deletions joss.05526/10.21105.joss.05526.jats
Original file line number Diff line number Diff line change
@@ -0,0 +1,200 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.2 20190208//EN"
"JATS-publishing1.dtd">
<article xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" dtd-version="1.2" article-type="other">
<front>
<journal-meta>
<journal-id></journal-id>
<journal-title-group>
<journal-title>Journal of Open Source Software</journal-title>
<abbrev-journal-title>JOSS</abbrev-journal-title>
</journal-title-group>
<issn publication-format="electronic">2475-9066</issn>
<publisher>
<publisher-name>Open Journals</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="publisher-id">5526</article-id>
<article-id pub-id-type="doi">10.21105/joss.05526</article-id>
<title-group>
<article-title>bayes-toolbox: A Python package for Bayesian
statistics</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">https://orcid.org/0000-0003-0109-593X</contrib-id>
<name>
<surname>Kim</surname>
<given-names>Hyosub E.</given-names>
</name>
<xref ref-type="aff" rid="aff-1"/>
<xref ref-type="aff" rid="aff-2"/>
</contrib>
<aff id="aff-1">
<institution-wrap>
<institution>School of Kinesiology, The University of British Columbia,
Canada</institution>
</institution-wrap>
</aff>
<aff id="aff-2">
<institution-wrap>
<institution>Department of Physical Therapy, University of Delaware,
United States</institution>
</institution-wrap>
</aff>
</contrib-group>
<pub-date date-type="pub" publication-format="electronic" iso-8601-date="2023-04-22">
<day>22</day>
<month>4</month>
<year>2023</year>
</pub-date>
<volume>8</volume>
<issue>90</issue>
<fpage>5526</fpage>
<permissions>
<copyright-statement>Authors of papers retain copyright and release the
work under a Creative Commons Attribution 4.0 International License (CC
BY 4.0)</copyright-statement>
<copyright-year>2022</copyright-year>
<copyright-holder>The article authors</copyright-holder>
<license license-type="open-access" xlink:href="https://creativecommons.org/licenses/by/4.0/">
<license-p>Authors of papers retain copyright and release the work under
a Creative Commons Attribution 4.0 International License (CC BY
4.0)</license-p>
</license>
</permissions>
<kwd-group kwd-group-type="author">
<kwd>Python</kwd>
<kwd>Bayesian statistics</kwd>
<kwd>psychology</kwd>
<kwd>neuroscience</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="summary">
<title>Summary</title>
<p><monospace>bayes-toolbox</monospace> is a Python package intended
to facilitate the increased use and adoption of Bayesian statistics in
scientific research. As Python is one of the fastest growing and most
widely used programming languages,
<monospace>bayes-toolbox</monospace> fills the need for a Python
library that makes it as easy to perform Bayesian statistical tests as
it currently is to perform their “frequentist” counterparts. The
intended users of <monospace>bayes-toolbox</monospace> are students
and researchers, particularly those in the behavioral and neural
sciences, who are looking for a low friction way to learn Bayesian
statistics and incorporate it into their research.</p>
</sec>
<sec id="statement-of-need">
<title>Statement of need</title>
<p>Currently, Python users can choose between several packages that
provide simple-to-use functions for running classical/frequentist
statistical tests (e.g.,
<ext-link ext-link-type="uri" xlink:href="https://pingouin-stats.org/build/html/index.html#">Pingouin</ext-link>,
<ext-link ext-link-type="uri" xlink:href="https://scipy.org/">SciPy</ext-link>,
<ext-link ext-link-type="uri" xlink:href="https://pandas.pydata.org/">pandas</ext-link>,
and
<ext-link ext-link-type="uri" xlink:href="https://www.statsmodels.org/stable/index.html">statsmodels</ext-link>).
In contrast, for Bayesian statistics there has only been the excellent
<ext-link ext-link-type="uri" xlink:href="https://bambinos.github.io/bambi/">Bambi</ext-link>
package, which, while quite powerful and robust, does require more
advanced knowledge and familiarity with
<ext-link ext-link-type="uri" xlink:href="https://cran.r-project.org/web/packages/brms/index.html">R-brms</ext-link>
syntax. Therefore, the goal of <monospace>bayes-toolbox</monospace> is
to fill an important gap in the Python-Bayesian community, by
providing an easy-to-use module for less experienced users that makes
it as simple, in Python, to fit a Bayesian model to data as it is to
run a frequentist statistical test. As all of the models (tests) are
executable with single functions, they are ideal for use in an open,
replicable workflow
(<xref alt="Wilson et al., 2017" rid="ref-wilson2017good" ref-type="bibr">Wilson
et al., 2017</xref>).</p>
<p><monospace>bayes-toolbox</monospace> is a Python package that makes
performing such Bayesian analyses simple and straight forward. By
leveraging PyMC, a probabilistic programming library written in Python
(<xref alt="Patil et al., 2010" rid="ref-patil2010pymc" ref-type="bibr">Patil
et al., 2010</xref>), and providing easy-to-use functions,
<monospace>bayes-toolbox</monospace> removes many of the technical
barriers previously associated with Bayesian analyses, especially for
users who would prefer to work with Python over other programming
languages (e.g., R). This package also removes the requirement to
include model formulas to perform statistical tests, another potential
barrier for end users. And as the <monospace>bayes-toolbox</monospace>
functions provide Bayesian analogues of many of the most common
classical tests used by scientists, including t-tests, ANOVAs, and
regression models, as well as hierarchical (multi-level) models and
meta-analyses, it provides a much needed bridge for researchers who
are familiar with frequentist statistics but wish to explore the
Bayesian framework.</p>
<p><monospace>bayes-toolbox</monospace> was designed for and targeted
to researchers primarily in the behavioral and neural sciences.
However, as many of the models and Jupyter notebook tutorials included
in the public <monospace>bayes-toolbox</monospace> repository are
adapted from the well-known textbook “Doing Bayesian Data Analysis”
(<xref alt="Kruschke, 2014" rid="ref-kruschke2014doing" ref-type="bibr">Kruschke,
2014</xref>), <monospace>bayes-toolbox</monospace> can also serve as
an important pedagogical tool for students and researchers alike.</p>
</sec>
<sec id="acknowledgements">
<title>Acknowledgements</title>
<p>Thank you to the PyMC developers, John Kruschke, and Jordi
Warmenhoven for generously sharing your work and knowledge.</p>
</sec>
</body>
<back>
<ref-list>
<ref id="ref-patil2010pymc">
<element-citation publication-type="article-journal">
<person-group person-group-type="author">
<name><surname>Patil</surname><given-names>Anand</given-names></name>
<name><surname>Huard</surname><given-names>David</given-names></name>
<name><surname>Fonnesbeck</surname><given-names>Christopher J</given-names></name>
</person-group>
<article-title>PyMC: Bayesian Stochastic Modelling in Python</article-title>
<source>Journal of Statistical Software</source>
<publisher-name>Europe PMC Funders</publisher-name>
<year iso-8601-date="2010">2010</year>
<volume>35</volume>
<issue>4</issue>
<pub-id pub-id-type="doi">10.18637/jss.v035.i04</pub-id>
<fpage>1</fpage>
<lpage></lpage>
</element-citation>
</ref>
<ref id="ref-kruschke2014doing">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name><surname>Kruschke</surname><given-names>John</given-names></name>
</person-group>
<source>Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan</source>
<publisher-name>Academic Press</publisher-name>
<year iso-8601-date="2014">2014</year>
<pub-id pub-id-type="doi">10.1016/c2012-0-00477-2</pub-id>
</element-citation>
</ref>
<ref id="ref-wilson2017good">
<element-citation publication-type="article-journal">
<person-group person-group-type="author">
<name><surname>Wilson</surname><given-names>Greg</given-names></name>
<name><surname>Bryan</surname><given-names>Jennifer</given-names></name>
<name><surname>Cranston</surname><given-names>Karen</given-names></name>
<name><surname>Kitzes</surname><given-names>Justin</given-names></name>
<name><surname>Nederbragt</surname><given-names>Lex</given-names></name>
<name><surname>Teal</surname><given-names>Tracy K</given-names></name>
</person-group>
<article-title>Good enough practices in scientific computing</article-title>
<source>PLoS computational biology</source>
<publisher-name>Public Library of Science</publisher-name>
<year iso-8601-date="2017">2017</year>
<volume>13</volume>
<issue>6</issue>
<pub-id pub-id-type="doi">10.1371/journal.pcbi.1005510</pub-id>
<fpage>e1005510</fpage>
<lpage></lpage>
</element-citation>
</ref>
</ref-list>
</back>
</article>
Binary file added joss.05526/10.21105.joss.05526.pdf
Binary file not shown.

0 comments on commit 28cbafc

Please sign in to comment.