-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Creating 10.21105.joss.05776.crossref.xml
- Loading branch information
1 parent
8e52f6e
commit 26cc326
Showing
1 changed file
with
369 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,369 @@ | ||
<?xml version="1.0" encoding="UTF-8"?> | ||
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1" | ||
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" | ||
xmlns:rel="http://www.crossref.org/relations.xsd" | ||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" | ||
version="5.3.1" | ||
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd"> | ||
<head> | ||
<doi_batch_id>20230928T193704-b7b93635dec6c91a17a6a3c2950078839a3e3195</doi_batch_id> | ||
<timestamp>20230928193704</timestamp> | ||
<depositor> | ||
<depositor_name>JOSS Admin</depositor_name> | ||
<email_address>[email protected]</email_address> | ||
</depositor> | ||
<registrant>The Open Journal</registrant> | ||
</head> | ||
<body> | ||
<journal> | ||
<journal_metadata> | ||
<full_title>Journal of Open Source Software</full_title> | ||
<abbrev_title>JOSS</abbrev_title> | ||
<issn media_type="electronic">2475-9066</issn> | ||
<doi_data> | ||
<doi>10.21105/joss</doi> | ||
<resource>https://joss.theoj.org</resource> | ||
</doi_data> | ||
</journal_metadata> | ||
<journal_issue> | ||
<publication_date media_type="online"> | ||
<month>09</month> | ||
<year>2023</year> | ||
</publication_date> | ||
<journal_volume> | ||
<volume>8</volume> | ||
</journal_volume> | ||
<issue>89</issue> | ||
</journal_issue> | ||
<journal_article publication_type="full_text"> | ||
<titles> | ||
<title>BlackBIRDS: Black-Box Inference foR Differentiable | ||
Simulators</title> | ||
</titles> | ||
<contributors> | ||
<person_name sequence="first" contributor_role="author"> | ||
<given_name>Arnau</given_name> | ||
<surname>Quera-Bofarull</surname> | ||
<ORCID>https://orcid.org/0000-0001-5055-9863</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Joel</given_name> | ||
<surname>Dyer</surname> | ||
<ORCID>https://orcid.org/0000-0002-8304-8450</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Anisoara</given_name> | ||
<surname>Calinescu</surname> | ||
<ORCID>https://orcid.org/0000-0003-2082-734X</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>J. Doyne</given_name> | ||
<surname>Farmer</surname> | ||
<ORCID>https://orcid.org/0000-0001-7871-073X</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Michael</given_name> | ||
<surname>Wooldridge</surname> | ||
<ORCID>https://orcid.org/0000-0002-9329-8410</ORCID> | ||
</person_name> | ||
</contributors> | ||
<publication_date> | ||
<month>09</month> | ||
<day>28</day> | ||
<year>2023</year> | ||
</publication_date> | ||
<pages> | ||
<first_page>5776</first_page> | ||
</pages> | ||
<publisher_item> | ||
<identifier id_type="doi">10.21105/joss.05776</identifier> | ||
</publisher_item> | ||
<ai:program name="AccessIndicators"> | ||
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
</ai:program> | ||
<rel:program> | ||
<rel:related_item> | ||
<rel:description>Software archive</rel:description> | ||
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.8377044</rel:inter_work_relation> | ||
</rel:related_item> | ||
<rel:related_item> | ||
<rel:description>GitHub review issue</rel:description> | ||
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5776</rel:inter_work_relation> | ||
</rel:related_item> | ||
</rel:program> | ||
<doi_data> | ||
<doi>10.21105/joss.05776</doi> | ||
<resource>https://joss.theoj.org/papers/10.21105/joss.05776</resource> | ||
<collection property="text-mining"> | ||
<item> | ||
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05776.pdf</resource> | ||
</item> | ||
</collection> | ||
</doi_data> | ||
<citation_list> | ||
<citation key="pytorch"> | ||
<article_title>PyTorch: An imperative style, | ||
high-performance deep learning library</article_title> | ||
<author>Paszke</author> | ||
<journal_title>Proceedings of the 33rd international | ||
conference on neural information processing systems</journal_title> | ||
<cYear>2019</cYear> | ||
<unstructured_citation>Paszke, A., Gross, S., Massa, F., | ||
Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, | ||
N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, | ||
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. | ||
(2019). PyTorch: An imperative style, high-performance deep learning | ||
library. In Proceedings of the 33rd international conference on neural | ||
information processing systems. Curran Associates | ||
Inc.</unstructured_citation> | ||
</citation> | ||
<citation key="normflows"> | ||
<article_title>Normflows: A PyTorch package for normalizing | ||
flows</article_title> | ||
<author>Stimper</author> | ||
<journal_title>Journal of Open Source | ||
Software</journal_title> | ||
<issue>86</issue> | ||
<volume>8</volume> | ||
<doi>10.21105/joss.05361</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Stimper, V., Liu, D., Campbell, A., | ||
Berenz, V., Ryll, L., Schölkopf, B., & Hernández-Lobato, J. M. | ||
(2023). Normflows: A PyTorch package for normalizing flows. Journal of | ||
Open Source Software, 8(86), 5361. | ||
https://doi.org/10.21105/joss.05361</unstructured_citation> | ||
</citation> | ||
<citation key="gradabm"> | ||
<article_title>Differentiable agent-based | ||
epidemiology</article_title> | ||
<author>Chopra</author> | ||
<journal_title>Proceedings of the 2023 international | ||
conference on autonomous agents and multiagent systems</journal_title> | ||
<isbn>978-1-4503-9432-1</isbn> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Chopra, A., Rodríguez, A., | ||
Subramanian, J., Quera-Bofarull, A., Krishnamurthy, B., Prakash, B. A., | ||
& Raskar, R. (2023). Differentiable agent-based epidemiology. | ||
Proceedings of the 2023 International Conference on Autonomous Agents | ||
and Multiagent Systems, 1848–1857. | ||
ISBN: 978-1-4503-9432-1</unstructured_citation> | ||
</citation> | ||
<citation key="hep"> | ||
<article_title>Differentiable programming in high-energy | ||
physics</article_title> | ||
<author>Baydin</author> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Baydin, A. G., NYU, K. C., Feickert, | ||
M., Gray, L., Heinrich, L., NYU, A. H., Neubauer, A. M. V. M., Pearkes, | ||
J., Simpson, N., Smith, N., & others. (2020). Differentiable | ||
programming in high-energy physics.</unstructured_citation> | ||
</citation> | ||
<citation key="ii"> | ||
<article_title>Indirect inference</article_title> | ||
<author>Gourieroux</author> | ||
<journal_title>Journal of applied | ||
econometrics</journal_title> | ||
<issue>S1</issue> | ||
<volume>8</volume> | ||
<cYear>1993</cYear> | ||
<unstructured_citation>Gourieroux, C., Monfort, A., & | ||
Renault, E. (1993). Indirect inference. Journal of Applied Econometrics, | ||
8(S1), S85–S118.</unstructured_citation> | ||
</citation> | ||
<citation key="smm"> | ||
<article_title>Applying the method of simulated moments to | ||
estimate a small agent-based asset pricing model</article_title> | ||
<author>Franke</author> | ||
<journal_title>Journal of Empirical Finance</journal_title> | ||
<issue>5</issue> | ||
<volume>16</volume> | ||
<doi>10.1016/j.jempfin.2009.06.006</doi> | ||
<cYear>2009</cYear> | ||
<unstructured_citation>Franke, R. (2009). Applying the | ||
method of simulated moments to estimate a small agent-based asset | ||
pricing model. Journal of Empirical Finance, 16(5), 804–815. | ||
https://doi.org/10.1016/j.jempfin.2009.06.006</unstructured_citation> | ||
</citation> | ||
<citation key="mala"> | ||
<article_title>Exponential convergence of Langevin | ||
distributions and their discrete approximations</article_title> | ||
<author>Roberts</author> | ||
<journal_title>Bernoulli</journal_title> | ||
<doi>10.2307/3318418</doi> | ||
<cYear>1996</cYear> | ||
<unstructured_citation>Roberts, G. O., & Tweedie, R. L. | ||
(1996). Exponential convergence of Langevin distributions and their | ||
discrete approximations. Bernoulli, 341–363. | ||
https://doi.org/10.2307/3318418</unstructured_citation> | ||
</citation> | ||
<citation key="hmc"> | ||
<article_title>Hybrid Monte Carlo</article_title> | ||
<author>Duane</author> | ||
<journal_title>Physics letters B</journal_title> | ||
<issue>2</issue> | ||
<volume>195</volume> | ||
<cYear>1987</cYear> | ||
<unstructured_citation>Duane, S., Kennedy, A. D., Pendleton, | ||
B. J., & Roweth, D. (1987). Hybrid Monte Carlo. Physics Letters B, | ||
195(2), 216–222.</unstructured_citation> | ||
</citation> | ||
<citation key="bissiri"> | ||
<article_title>A general framework for updating belief | ||
distributions</article_title> | ||
<author>Bissiri</author> | ||
<journal_title>Journal of the Royal Statistical Society: | ||
Series B (Statistical Methodology)</journal_title> | ||
<issue>5</issue> | ||
<volume>78</volume> | ||
<doi>10.1111/rssb.12158</doi> | ||
<cYear>2016</cYear> | ||
<unstructured_citation>Bissiri, P. G., Holmes, C., & | ||
Walker, S. G. (2016). A general framework for updating belief | ||
distributions. Journal of the Royal Statistical Society: Series B | ||
(Statistical Methodology), 78(5), 1103. | ||
https://doi.org/10.1111/rssb.12158</unstructured_citation> | ||
</citation> | ||
<citation key="gvi"> | ||
<article_title>An optimization-centric view on Bayes’ rule: | ||
Reviewing and generalizing variational inference</article_title> | ||
<author>Knoblauch</author> | ||
<journal_title>Journal of Machine Learning | ||
Research</journal_title> | ||
<issue>132</issue> | ||
<volume>23</volume> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Knoblauch, J., Jewson, J., & | ||
Damoulas, T. (2022). An optimization-centric view on Bayes’ rule: | ||
Reviewing and generalizing variational inference. Journal of Machine | ||
Learning Research, 23(132), 1–109.</unstructured_citation> | ||
</citation> | ||
<citation key="ai4abm"> | ||
<article_title>Bayesian calibration of differentiable | ||
agent-based models</article_title> | ||
<author>Quera-Bofarull</author> | ||
<journal_title>ICLR Workshop on AI for Agent-based | ||
Modelling</journal_title> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Quera-Bofarull, A., Chopra, A., | ||
Calinescu, A., Wooldridge, M., & Dyer, J. (2023). Bayesian | ||
calibration of differentiable agent-based models. ICLR Workshop on AI | ||
for Agent-Based Modelling.</unstructured_citation> | ||
</citation> | ||
<citation key="dae"> | ||
<article_title>Some challenges of calibrating differentiable | ||
agent-based models</article_title> | ||
<author>Quera-Bofarull</author> | ||
<journal_title>ICML Differentiable Almost Everything | ||
Workshop</journal_title> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Quera-Bofarull, A., Dyer, J., | ||
Calinescu, A., & Wooldridge, M. (2023). Some challenges of | ||
calibrating differentiable agent-based models. ICML Differentiable | ||
Almost Everything Workshop.</unstructured_citation> | ||
</citation> | ||
<citation key="sbi"> | ||
<article_title>Sbi: A toolkit for simulation-based | ||
inference</article_title> | ||
<author>Tejero-Cantero</author> | ||
<journal_title>Journal of Open Source | ||
Software</journal_title> | ||
<issue>52</issue> | ||
<volume>5</volume> | ||
<doi>10.21105/joss.02505</doi> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Tejero-Cantero, A., Boelts, J., | ||
Deistler, M., Lueckmann, J.-M., Durkan, C., Gonçalves, P. J., Greenberg, | ||
D. S., & Macke, J. H. (2020). Sbi: A toolkit for simulation-based | ||
inference. Journal of Open Source Software, 5(52), 2505. | ||
https://doi.org/10.21105/joss.02505</unstructured_citation> | ||
</citation> | ||
<citation key="blit"> | ||
<article_title>Black-it: A ready-to-use and easy-to-extend | ||
calibration kit for agent-based models</article_title> | ||
<author>Benedetti</author> | ||
<journal_title>Journal of Open Source | ||
Software</journal_title> | ||
<issue>79</issue> | ||
<volume>7</volume> | ||
<doi>10.21105/joss.04622</doi> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Benedetti, M., Catapano, G., Sclavis, | ||
F. D., Favorito, M., Glielmo, A., Magnanimi, D., & Muci, A. (2022). | ||
Black-it: A ready-to-use and easy-to-extend calibration kit for | ||
agent-based models. Journal of Open Source Software, 7(79), 4622. | ||
https://doi.org/10.21105/joss.04622</unstructured_citation> | ||
</citation> | ||
<citation key="pyvbmc"> | ||
<article_title>PyVBMC: Efficient Bayesian inference in | ||
python</article_title> | ||
<author>Huggins</author> | ||
<journal_title>Journal of Open Source | ||
Software</journal_title> | ||
<issue>86</issue> | ||
<volume>8</volume> | ||
<doi>10.21105/joss.05428</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Huggins, B., Li, C., Tobaben, M., | ||
Aarnos, M. J., & Acerbi, L. (2023). PyVBMC: Efficient Bayesian | ||
inference in python. Journal of Open Source Software, 8(86), 5428. | ||
https://doi.org/10.21105/joss.05428</unstructured_citation> | ||
</citation> | ||
<citation key="abcpy"> | ||
<article_title>ABCpy: A high-performance computing | ||
perspective to approximate Bayesian computation</article_title> | ||
<author>Dutta</author> | ||
<journal_title>Journal of Statistical | ||
Software</journal_title> | ||
<issue>7</issue> | ||
<volume>100</volume> | ||
<doi>10.18637/jss.v100.i07</doi> | ||
<cYear>2021</cYear> | ||
<unstructured_citation>Dutta, R., Schoengens, M., | ||
Pacchiardi, L., Ummadisingu, A., Widmer, N., Künzli, P., Onnela, J.-P., | ||
& Mira, A. (2021). ABCpy: A high-performance computing perspective | ||
to approximate Bayesian computation. Journal of Statistical Software, | ||
100(7), 1–38. | ||
https://doi.org/10.18637/jss.v100.i07</unstructured_citation> | ||
</citation> | ||
<citation key="pyabc"> | ||
<article_title>pyABC: Efficient and robust easy-to-use | ||
approximate Bayesian computation</article_title> | ||
<author>Schälte</author> | ||
<journal_title>Journal of Open Source | ||
Software</journal_title> | ||
<issue>74</issue> | ||
<volume>7</volume> | ||
<doi>10.21105/joss.04304</doi> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Schälte, Y., Klinger, E., Alamoudi, | ||
E., & Hasenauer, J. (2022). pyABC: Efficient and robust easy-to-use | ||
approximate Bayesian computation. Journal of Open Source Software, | ||
7(74), 4304. https://doi.org/10.21105/joss.04304</unstructured_citation> | ||
</citation> | ||
<citation key="radev2023bayesflow"> | ||
<article_title>BayesFlow: Amortized Bayesian Workflows With | ||
Neural Networks</article_title> | ||
<author>Radev</author> | ||
<journal_title>Journal of Open Source | ||
Software</journal_title> | ||
<issue>89</issue> | ||
<volume>8</volume> | ||
<doi>10.21105/joss.05702</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Radev, S. T., Schmitt, M., | ||
Schumacher, L., Elsemüller, L., Pratz, V., Schälte, Y., Köthe, U., & | ||
Bürkner, P.-C. (2023). BayesFlow: Amortized Bayesian Workflows With | ||
Neural Networks. Journal of Open Source Software, 8(89), 5702. | ||
https://doi.org/10.21105/joss.05702</unstructured_citation> | ||
</citation> | ||
</citation_list> | ||
</journal_article> | ||
</journal> | ||
</body> | ||
</doi_batch> |