Skip to content

Commit

Permalink
Merge pull request #6251 from openjournals/joss.06315
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Dec 11, 2024
2 parents 16d82c1 + 6bebd6f commit 13b0f1f
Show file tree
Hide file tree
Showing 6 changed files with 1,204 additions and 0 deletions.
300 changes: 300 additions & 0 deletions joss.06315/10.21105.joss.06315.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,300 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20241211162027-87e77e4be7a19660f2ed03940144ed7b94615c66</doi_batch_id>
<timestamp>20241211162027</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>12</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>104</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>pySLM2: A full-stack python package for holographic beam shaping</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Chung-You</given_name>
<surname>Shih</surname>
<affiliations>
<institution><institution_name>Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1, Canada</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-7561-6833</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Jingwen</given_name>
<surname>Zhu</surname>
<affiliations>
<institution><institution_name>Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1, Canada</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0009-0009-0699-8258</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Rajibul</given_name>
<surname>Islam</surname>
<affiliations>
<institution><institution_name>Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1, Canada</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-6483-8932</ORCID>
</person_name>
</contributors>
<publication_date>
<month>12</month>
<day>11</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6315</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06315</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.14025566</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6315</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06315</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06315</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06315.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="shih2021reprogrammable">
<article_title>Reprogrammable and high-precision holographic optical addressing of trapped ions for scalable quantum control</article_title>
<author>Shih</author>
<journal_title>npj Quantum Information</journal_title>
<issue>1</issue>
<volume>7</volume>
<doi>10.1038/s41534-021-00396-0</doi>
<cYear>2021</cYear>
<unstructured_citation>Shih, C.-Y., Motlakunta, S., Kotibhaskar, N., Sajjan, M., Hablützel, R., &amp; Islam, R. (2021). Reprogrammable and high-precision holographic optical addressing of trapped ions for scalable quantum control. Npj Quantum Information, 7(1), 57. https://doi.org/10.1038/s41534-021-00396-0</unstructured_citation>
</citation>
<citation key="zupancic2016ultra">
<article_title>Ultra-precise holographic beam shaping for microscopic quantum control</article_title>
<author>Zupancic</author>
<journal_title>Optics express</journal_title>
<issue>13</issue>
<volume>24</volume>
<doi>10.1364/OE.24.013881</doi>
<cYear>2016</cYear>
<unstructured_citation>Zupancic, P., Preiss, P. M., Ma, R., Lukin, A., Tai, M. E., Rispoli, M., Islam, R., &amp; Greiner, M. (2016). Ultra-precise holographic beam shaping for microscopic quantum control. Optics Express, 24(13), 13881–13893. https://doi.org/10.1364/OE.24.013881</unstructured_citation>
</citation>
<citation key="lee1978iii">
<article_title>III computer-generated holograms: Techniques and applications</article_title>
<author>Lee</author>
<journal_title>Progress in optics</journal_title>
<volume>16</volume>
<doi>10.1016/S0079-6638(08)70072-6</doi>
<cYear>1978</cYear>
<unstructured_citation>Lee, W.-H. (1978). III computer-generated holograms: Techniques and applications. In Progress in optics (Vol. 16, pp. 119–232). Elsevier. https://doi.org/10.1016/S0079-6638(08)70072-6</unstructured_citation>
</citation>
<citation key="gerhberg1972practical">
<article_title>A practical algorithm for the determination of phase from image and diffraction plane picture</article_title>
<author>Gerhberg</author>
<journal_title>Optik</journal_title>
<volume>35</volume>
<cYear>1972</cYear>
<unstructured_citation>Gerhberg, R., &amp; Saxton, W. (1972). A practical algorithm for the determination of phase from image and diffraction plane picture. Optik, 35, 237–246. https://web.archive.org/web/20220505015731/http://www.u.arizona.edu/~ppoon/GerchbergandSaxton1972.pdf</unstructured_citation>
</citation>
<citation key="sebastien_m_popoff_2022_6121191">
<article_title>Wavefrontshaping/ALP4lib: 1.0.1</article_title>
<author>Popoff</author>
<doi>10.5281/zenodo.6121191</doi>
<cYear>2022</cYear>
<unstructured_citation>Popoff, S. M., Shih, G., B., D., &amp; GustavePariente. (2022). Wavefrontshaping/ALP4lib: 1.0.1 (Version 1.0.1). Zenodo. https://doi.org/10.5281/zenodo.6121191</unstructured_citation>
</citation>
<citation key="gaunt2012robust">
<article_title>Robust digital holography for ultracold atom trapping</article_title>
<author>Gaunt</author>
<journal_title>Scientific reports</journal_title>
<issue>1</issue>
<volume>2</volume>
<doi>10.1038/srep00721</doi>
<cYear>2012</cYear>
<unstructured_citation>Gaunt, A. L., &amp; Hadzibabic, Z. (2012). Robust digital holography for ultracold atom trapping. Scientific Reports, 2(1), 721. https://doi.org/10.1038/srep00721</unstructured_citation>
</citation>
<citation key="qian2021super">
<article_title>Super-resolved imaging of a single cold atom on a nanosecond timescale</article_title>
<author>Qian</author>
<journal_title>Physical review letters</journal_title>
<issue>26</issue>
<volume>127</volume>
<doi>10.1103/PhysRevLett.127.263603</doi>
<cYear>2021</cYear>
<unstructured_citation>Qian, Z.-H., Cui, J.-M., Luo, X.-W., Zheng, Y.-X., Huang, Y.-F., Ai, M.-Z., He, R., Li, C.-F., &amp; Guo, G.-C. (2021). Super-resolved imaging of a single cold atom on a nanosecond timescale. Physical Review Letters, 127(26), 263603. https://doi.org/10.1103/PhysRevLett.127.263603</unstructured_citation>
</citation>
<citation key="drechsler2021optical">
<article_title>Optical superresolution sensing of a trapped ion’s wave packet size</article_title>
<author>Drechsler</author>
<journal_title>Physical Review Letters</journal_title>
<issue>14</issue>
<volume>127</volume>
<doi>10.1103/PhysRevLett.127.143602</doi>
<cYear>2021</cYear>
<unstructured_citation>Drechsler, M., Wolf, S., Schmiegelow, C. T., &amp; Schmidt-Kaler, F. (2021). Optical superresolution sensing of a trapped ion’s wave packet size. Physical Review Letters, 127(14), 143602. https://doi.org/10.1103/PhysRevLett.127.143602</unstructured_citation>
</citation>
<citation key="kotibhaskar2023programmable">
<article_title>Programmable XY-type couplings through parallel spin-dependent forces on the same trapped ion motional modes</article_title>
<author>Kotibhaskar</author>
<journal_title>arXiv preprint arXiv:2307.04922</journal_title>
<doi>10.1103/PhysRevResearch.6.033038</doi>
<cYear>2023</cYear>
<unstructured_citation>Kotibhaskar, N., Shih, C.-Y., Motlakunta, S., Vogliano, A., Hahn, L., Chen, Y.-T., &amp; Islam, R. (2023). Programmable XY-type couplings through parallel spin-dependent forces on the same trapped ion motional modes. arXiv Preprint arXiv:2307.04922. https://doi.org/10.1103/PhysRevResearch.6.033038</unstructured_citation>
</citation>
<citation key="andersen2006quantized">
<article_title>Quantized rotation of atoms from photons with orbital angular momentum</article_title>
<author>Andersen</author>
<journal_title>Physical review letters</journal_title>
<issue>17</issue>
<volume>97</volume>
<doi>10.1103/PhysRevLett.97.170406</doi>
<cYear>2006</cYear>
<unstructured_citation>Andersen, M., Ryu, C., Cladé, P., Natarajan, V., Vaziri, A., Helmerson, K., &amp; Phillips, W. D. (2006). Quantized rotation of atoms from photons with orbital angular momentum. Physical Review Letters, 97(17), 170406. https://doi.org/10.1103/PhysRevLett.97.170406</unstructured_citation>
</citation>
<citation key="kuga1997novel">
<article_title>Novel optical trap of atoms with a doughnut beam</article_title>
<author>Kuga</author>
<journal_title>Physical Review Letters</journal_title>
<issue>25</issue>
<volume>78</volume>
<doi>10.1103/PhysRevLett.78.4713</doi>
<cYear>1997</cYear>
<unstructured_citation>Kuga, T., Torii, Y., Shiokawa, N., Hirano, T., Shimizu, Y., &amp; Sasada, H. (1997). Novel optical trap of atoms with a doughnut beam. Physical Review Letters, 78(25), 4713. https://doi.org/10.1103/PhysRevLett.78.4713</unstructured_citation>
</citation>
<citation key="obata2010multi">
<article_title>Multi-focus two-photon polymerization technique based on individually controlled phase modulation</article_title>
<author>Obata</author>
<journal_title>Optics express</journal_title>
<issue>16</issue>
<volume>18</volume>
<doi>10.1364/OE.18.017193</doi>
<cYear>2010</cYear>
<unstructured_citation>Obata, K., Koch, J., Hinze, U., &amp; Chichkov, B. N. (2010). Multi-focus two-photon polymerization technique based on individually controlled phase modulation. Optics Express, 18(16), 17193–17200. https://doi.org/10.1364/OE.18.017193</unstructured_citation>
</citation>
<citation key="islam2015measuring">
<article_title>Measuring entanglement entropy in a quantum many-body system</article_title>
<author>Islam</author>
<journal_title>Nature</journal_title>
<issue>7580</issue>
<volume>528</volume>
<doi>10.1038/nature15750</doi>
<cYear>2015</cYear>
<unstructured_citation>Islam, R., Ma, R., Preiss, P. M., Eric Tai, M., Lukin, A., Rispoli, M., &amp; Greiner, M. (2015). Measuring entanglement entropy in a quantum many-body system. Nature, 528(7580), 77–83. https://doi.org/10.1038/nature15750</unstructured_citation>
</citation>
<citation key="shack1971production">
<article_title>Production and use of a lenticular hartmann screen</article_title>
<author>Shack</author>
<journal_title>Spring meeting of optical society of america, 1971</journal_title>
<volume>656</volume>
<doi>10.1364/JOSA.61.000648</doi>
<cYear>1971</cYear>
<unstructured_citation>Shack, R. V. (1971). Production and use of a lenticular hartmann screen. Spring Meeting of Optical Society of America, 1971, 656. https://doi.org/10.1364/JOSA.61.000648</unstructured_citation>
</citation>
<citation key="Paschottashack_hartmann_wavefront_sensors">
<article_title>Shack–hartmann wavefront sensors</article_title>
<author>Paschotta</author>
<doi>10.61835/jcv</doi>
<unstructured_citation>Paschotta, R. Shack–hartmann wavefront sensors. RP Photonics Encyclopedia; RP Photonics AG. https://doi.org/10.61835/jcv</unstructured_citation>
</citation>
<citation key="cupy_learningsys2017">
<article_title>CuPy: A NumPy-compatible library for NVIDIA GPU calculations</article_title>
<author>Okuta</author>
<journal_title>Proceedings of workshop on machine learning systems (LearningSys) in the thirty-first annual conference on neural information processing systems (NIPS)</journal_title>
<cYear>2017</cYear>
<unstructured_citation>Okuta, R., Unno, Y., Nishino, D., Hido, S., &amp; Loomis, C. (2017). CuPy: A NumPy-compatible library for NVIDIA GPU calculations. Proceedings of Workshop on Machine Learning Systems (LearningSys) in the Thirty-First Annual Conference on Neural Information Processing Systems (NIPS). http://learningsys.org/nips17/assets/papers/paper_16.pdf</unstructured_citation>
</citation>
<citation key="yamamoto2021gradient">
<article_title>Gradient-based optimization of time-multiplexed binary computer-generated holograms by digital mirror device</article_title>
<author>Yamamoto</author>
<journal_title>Digital holography and three-dimensional imaging</journal_title>
<doi>10.1364/DH.2021.DTh7C.1</doi>
<cYear>2021</cYear>
<unstructured_citation>Yamamoto, K., &amp; Ochiai, Y. (2021). Gradient-based optimization of time-multiplexed binary computer-generated holograms by digital mirror device. Digital Holography and Three-Dimensional Imaging, DTh7C–1. https://doi.org/10.1364/DH.2021.DTh7C.1</unstructured_citation>
</citation>
<citation key="matthes2019optical">
<article_title>Optical complex media as universal reconfigurable linear operators</article_title>
<author>Matthès</author>
<journal_title>Optica</journal_title>
<issue>4</issue>
<volume>6</volume>
<doi>10.1364/OPTICA.6.000465</doi>
<cYear>2019</cYear>
<unstructured_citation>Matthès, M. W., Del Hougne, P., De Rosny, J., Lerosey, G., &amp; Popoff, S. M. (2019). Optical complex media as universal reconfigurable linear operators. Optica, 6(4), 465–472. https://doi.org/10.1364/OPTICA.6.000465</unstructured_citation>
</citation>
<citation key="pasienski2008high">
<article_title>A high-accuracy algorithm for designing arbitrary holographic atom traps</article_title>
<author>Pasienski</author>
<journal_title>Optics express</journal_title>
<issue>3</issue>
<volume>16</volume>
<doi>10.1364/OE.16.002176</doi>
<cYear>2008</cYear>
<unstructured_citation>Pasienski, M., &amp; DeMarco, B. (2008). A high-accuracy algorithm for designing arbitrary holographic atom traps. Optics Express, 16(3), 2176–2190. https://doi.org/10.1364/OE.16.002176</unstructured_citation>
</citation>
<citation key="motlakunta2024">
<article_title>Preserving a qubit during state-destroying operations on an adjacent qubit at a few micrometers distance</article_title>
<author>Motlakunta</author>
<journal_title>Nature Communications</journal_title>
<issue>1</issue>
<volume>15</volume>
<doi>10.1038/s41467-024-50864-2</doi>
<issn>2041-1723</issn>
<cYear>2024</cYear>
<unstructured_citation>Motlakunta, S., Kotibhaskar, N., Shih, C.-Y., Vogliano, A., McLaren, D., Hahn, L., Zhu, J., Hablützel, R., &amp; Islam, R. (2024). Preserving a qubit during state-destroying operations on an adjacent qubit at a few micrometers distance. Nature Communications, 15(1), 6575. https://doi.org/10.1038/s41467-024-50864-2</unstructured_citation>
</citation>
<citation key="tensorflow_developers_2024_13989084">
<article_title>TensorFlow</article_title>
<author>TensorFlow Developers</author>
<doi>10.5281/zenodo.13989084</doi>
<cYear>2024</cYear>
<unstructured_citation>TensorFlow Developers. (2024). TensorFlow (Version v2.18.0). Zenodo. https://doi.org/10.5281/zenodo.13989084</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06315/10.21105.joss.06315.pdf
Binary file not shown.
Loading

0 comments on commit 13b0f1f

Please sign in to comment.