Skip to content

Commit

Permalink
Merge pull request #6023 from openjournals/joss.07085
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Oct 21, 2024
2 parents 926d691 + 7dff0c7 commit 0cd49ba
Show file tree
Hide file tree
Showing 3 changed files with 735 additions and 0 deletions.
254 changes: 254 additions & 0 deletions joss.07085/10.21105.joss.07085.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,254 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20241021074950-86b7b35a79e7bf983fc86a579dad89c9ec888be3</doi_batch_id>
<timestamp>20241021074950</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>10</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>102</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>ASIMTools: A lightweight framework for scalable and
reproducible atomic simulations</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Mgcini Keith</given_name>
<surname>Phuthi</surname>
<ORCID>https://orcid.org/0000-0002-0982-8635</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Emil</given_name>
<surname>Annevelink</surname>
<ORCID>https://orcid.org/0000-0001-5035-7807</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Venkatasubramanian</given_name>
<surname>Viswanathan</surname>
<ORCID>https://orcid.org/0000-0003-1060-5495</ORCID>
</person_name>
</contributors>
<publication_date>
<month>10</month>
<day>21</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>7085</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.07085</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.13952433</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/7085</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.07085</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.07085</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.07085.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="gjerding_atomic_2021">
<article_title>Atomic Simulation Recipes: A Python framework
and library for automated workflows</article_title>
<author>Gjerding</author>
<journal_title>Computational Materials
Science</journal_title>
<volume>199</volume>
<doi>10.1016/j.commatsci.2021.110731</doi>
<issn>0927-0256</issn>
<cYear>2021</cYear>
<unstructured_citation>Gjerding, M., Skovhus, T., Rasmussen,
A., Bertoldo, F., Larsen, A. H., Mortensen, J. J., &amp; Thygesen, K. S.
(2021). Atomic Simulation Recipes: A Python framework and library for
automated workflows. Computational Materials Science, 199, 110731.
https://doi.org/10.1016/j.commatsci.2021.110731</unstructured_citation>
</citation>
<citation key="thompson_lammps_2022">
<article_title>LAMMPS - a flexible simulation tool for
particle-based materials modeling at the atomic, meso, and continuum
scales</article_title>
<author>Thompson</author>
<journal_title>Comp. Phys. Comm.</journal_title>
<volume>271</volume>
<doi>10.1016/j.cpc.2021.108171</doi>
<cYear>2022</cYear>
<unstructured_citation>Thompson, A. P., Aktulga, H. M.,
Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., Veld, P.
J. in ’t, Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens,
M. J., Tranchida, J., Trott, C., &amp; Plimpton, S. J. (2022). LAMMPS -
a flexible simulation tool for particle-based materials modeling at the
atomic, meso, and continuum scales. Comp. Phys. Comm., 271, 108171.
https://doi.org/10.1016/j.cpc.2021.108171</unstructured_citation>
</citation>
<citation key="walsh_open_2024">
<article_title>Open computational materials
science</article_title>
<author>Walsh</author>
<journal_title>Nature Materials</journal_title>
<issue>1</issue>
<volume>23</volume>
<doi>10.1038/s41563-023-01699-7</doi>
<issn>1476-4660</issn>
<cYear>2024</cYear>
<unstructured_citation>Walsh, A. (2024). Open computational
materials science. Nature Materials, 23(1), 16–17.
https://doi.org/10.1038/s41563-023-01699-7</unstructured_citation>
</citation>
<citation key="jain_fireworks_2015">
<article_title>FireWorks: A dynamic workflow system designed
for high-throughput applications</article_title>
<author>Jain</author>
<journal_title>Concurrency and Computation: Practice and
Experience</journal_title>
<issue>17</issue>
<volume>27</volume>
<doi>10.1002/cpe.3505</doi>
<issn>1532-0634</issn>
<cYear>2015</cYear>
<unstructured_citation>Jain, A., Ong, S. P., Chen, W.,
Medasani, B., Qu, X., Kocher, M., Brafman, M., Petretto, G., Rignanese,
G.-M., Hautier, G., Gunter, D., &amp; Persson, K. A. (2015). FireWorks:
A dynamic workflow system designed for high-throughput applications.
Concurrency and Computation: Practice and Experience, 27(17), 5037–5059.
https://doi.org/10.1002/cpe.3505</unstructured_citation>
</citation>
<citation key="ong_python_2013">
<article_title>Python Materials Genomics (pymatgen): A
robust, open-source python library for materials
analysis</article_title>
<author>Ong</author>
<journal_title>Computational Materials
Science</journal_title>
<volume>68</volume>
<doi>10.1016/j.commatsci.2012.10.028</doi>
<issn>0927-0256</issn>
<cYear>2013</cYear>
<unstructured_citation>Ong, S. P., Richards, W. D., Jain,
A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier, V. L.,
Persson, K. A., &amp; Ceder, G. (2013). Python Materials Genomics
(pymatgen): A robust, open-source python library for materials analysis.
Computational Materials Science, 68, 314–319.
https://doi.org/10.1016/j.commatsci.2012.10.028</unstructured_citation>
</citation>
<citation key="larsen_atomic_2017">
<article_title>The atomic simulation environment—a Python
library for working with atoms</article_title>
<author>Larsen</author>
<journal_title>Journal of Physics: Condensed
Matter</journal_title>
<issue>27</issue>
<volume>29</volume>
<doi>10.1088/1361-648X/aa680e</doi>
<issn>0953-8984</issn>
<cYear>2017</cYear>
<unstructured_citation>Larsen, A. H., Mortensen, J. J.,
Blomqvist, J., Castelli, I. E., Christensen, R., Dułak, M., Friis, J.,
Groves, M. N., Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C.,
Jensen, P. B., Kermode, J., Kitchin, J. R., Kolsbjerg, E. L., Kubal, J.,
Kaasbjerg, K., Lysgaard, S., … Jacobsen, K. W. (2017). The atomic
simulation environment—a Python library for working with atoms. Journal
of Physics: Condensed Matter, 29(27), 273002.
https://doi.org/10.1088/1361-648X/aa680e</unstructured_citation>
</citation>
<citation key="huber_aiida_2020">
<article_title>AiiDA 1.0, a scalable computational
infrastructure for automated reproducible workflows and data
provenance</article_title>
<author>Huber</author>
<journal_title>Scientific Data</journal_title>
<issue>1</issue>
<volume>7</volume>
<doi>10.1038/s41597-020-00638-4</doi>
<issn>2052-4463</issn>
<cYear>2020</cYear>
<unstructured_citation>Huber, S. P., Zoupanos, S., Uhrin,
M., Talirz, L., Kahle, L., Häuselmann, R., Gresch, D., Müller, T.,
Yakutovich, A. V., Andersen, C. W., Ramirez, F. F., Adorf, C. S.,
Gargiulo, F., Kumbhar, S., Passaro, E., Johnston, C., Merkys, A.,
Cepellotti, A., Mounet, N., … Pizzi, G. (2020). AiiDA 1.0, a scalable
computational infrastructure for automated reproducible workflows and
data provenance. Scientific Data, 7(1), 300.
https://doi.org/10.1038/s41597-020-00638-4</unstructured_citation>
</citation>
<citation key="phuthi_accurate_2024">
<article_title>Accurate Surface and Finite-Temperature Bulk
Properties of Lithium Metal at Large Scales Using Machine Learning
Interaction Potentials</article_title>
<author>Phuthi</author>
<journal_title>ACS Omega</journal_title>
<issue>9</issue>
<volume>9</volume>
<doi>10.1021/acsomega.3c10014</doi>
<cYear>2024</cYear>
<unstructured_citation>Phuthi, M. K., Yao, A. M., Batzner,
S., Musaelian, A., Guan, P., Kozinsky, B., Cubuk, E. D., &amp;
Viswanathan, V. (2024). Accurate Surface and Finite-Temperature Bulk
Properties of Lithium Metal at Large Scales Using Machine Learning
Interaction Potentials. ACS Omega, 9(9), 10904–10912.
https://doi.org/10.1021/acsomega.3c10014</unstructured_citation>
</citation>
<citation key="phuthi_vibrational_2024">
<article_title>Vibrational Entropy and Free Energy of Solid
Lithium using Covariance of Atomic Displacements Enabled by Machine
Learning</article_title>
<author>Phuthi</author>
<cYear>2024</cYear>
<unstructured_citation>Phuthi, M. K., Huang, Y., Widom, M.,
&amp; Viswanathan, V. (2024). Vibrational Entropy and Free Energy of
Solid Lithium using Covariance of Atomic Displacements Enabled by
Machine Learning. arXiv.
http://arxiv.org/abs/2406.15491</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.07085/10.21105.joss.07085.pdf
Binary file not shown.
Loading

0 comments on commit 0cd49ba

Please sign in to comment.