Skip to content

Commit

Permalink
Merge pull request #4945 from openjournals/joss.05194
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jan 23, 2024
2 parents 932ad87 + a3b57f6 commit 04efe4f
Show file tree
Hide file tree
Showing 4 changed files with 1,179 additions and 0 deletions.
320 changes: 320 additions & 0 deletions joss.05194/10.21105.joss.05194.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,320 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240123T155745-312b6d8a31f03852ec7c606be34ae181df590495</doi_batch_id>
<timestamp>20240123155745</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>01</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>93</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>A C++ Implementation of a Cartesian Impedance
Controller for Robotic Manipulators</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Matthias</given_name>
<surname>Mayr</surname>
<ORCID>https://orcid.org/0000-0002-8198-3154</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Julian M.</given_name>
<surname>Salt-Ducaju</surname>
<ORCID>https://orcid.org/0000-0001-5256-8245</ORCID>
</person_name>
</contributors>
<publication_date>
<month>01</month>
<day>23</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>5194</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05194</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10513691</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5194</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05194</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05194</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05194.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="mayr22priors">
<article_title>Learning skill-based industrial robot tasks
with user priors</article_title>
<author>Mayr</author>
<journal_title>2022 IEEE 18th international conference on
automation science and engineering (CASE)</journal_title>
<doi>10.1109/CASE49997.2022.9926713</doi>
<cYear>2022</cYear>
<unstructured_citation>Mayr, M., Hvarfner, C.,
Chatzilygeroudis, K., Nardi, L., &amp; Krueger, V. (2022). Learning
skill-based industrial robot tasks with user priors. 2022 IEEE 18th
International Conference on Automation Science and Engineering (CASE),
1485–1492.
https://doi.org/10.1109/CASE49997.2022.9926713</unstructured_citation>
</citation>
<citation key="mayr23wiping">
<article_title>Using knowledge representation and task
planning for robot-agnostic skills on the example of contact-rich wiping
tasks</article_title>
<author>Mayr</author>
<journal_title>2023 IEEE 19th international conference on
automation science and engineering (CASE)</journal_title>
<doi>10.1109/CASE56687.2023.10260413</doi>
<cYear>2023</cYear>
<unstructured_citation>Mayr, M., Ahmad, F., Duerr, A., &amp;
Krueger, V. (2023). Using knowledge representation and task planning for
robot-agnostic skills on the example of contact-rich wiping tasks. 2023
IEEE 19th International Conference on Automation Science and Engineering
(CASE), 1–7.
https://doi.org/10.1109/CASE56687.2023.10260413</unstructured_citation>
</citation>
<citation key="mayr22skireil">
<article_title>Skill-based multi-objective reinforcement
learning of industrial robot tasks with planning and knowledge
integration</article_title>
<author>Mayr</author>
<journal_title>2022 IEEE international conference on
robotics and biomimetics (ROBIO)</journal_title>
<doi>10.1109/ROBIO55434.2022.10011996</doi>
<cYear>2022</cYear>
<unstructured_citation>Mayr, M., Ahmad, F.,
Chatzilygeroudis, K., Nardi, L., &amp; Krueger, V. (2022). Skill-based
multi-objective reinforcement learning of industrial robot tasks with
planning and knowledge integration. 2022 IEEE International Conference
on Robotics and Biomimetics (ROBIO), 1995–2002.
https://doi.org/10.1109/ROBIO55434.2022.10011996</unstructured_citation>
</citation>
<citation key="FDCC">
<article_title>Forward dynamics compliance control (FDCC): A
new approach to cartesian compliance for robotic
manipulators</article_title>
<author>Scherzinger</author>
<journal_title>IEEE/RSJ international conference on
intelligent robots and systems (IROS)</journal_title>
<doi>10.1109/IROS.2017.8206325</doi>
<cYear>2017</cYear>
<unstructured_citation>Scherzinger, S., Roennau, A., &amp;
Dillmann, R. (2017). Forward dynamics compliance control (FDCC): A new
approach to cartesian compliance for robotic manipulators. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
4568–4575.
https://doi.org/10.1109/IROS.2017.8206325</unstructured_citation>
</citation>
<citation key="ahmad2022generalizing">
<article_title>Generalizing behavior trees and
motion-generator (BTMG) policy representation for robotic tasks over
scenario parameters</article_title>
<author>Ahmad</author>
<journal_title>2022 IJCAI planning and reinforcement
learning workshop</journal_title>
<cYear>2022</cYear>
<unstructured_citation>Ahmad, F., Mayr, M., Topp, E. A.,
Malec, J., &amp; Krueger, V. (2022). Generalizing behavior trees and
motion-generator (BTMG) policy representation for robotic tasks over
scenario parameters. 2022 IJCAI Planning and Reinforcement Learning
Workshop.</unstructured_citation>
</citation>
<citation key="ahmad23generalization">
<article_title>Learning to adapt the parameters of behavior
trees and motion generators (BTMGs) to task variations</article_title>
<author>Ahmad</author>
<journal_title>2023 IEEE/RSJ international conference on
intelligent robots and systems (IROS)</journal_title>
<doi>10.1109/IROS55552.2023.10341636</doi>
<cYear>2023</cYear>
<unstructured_citation>Ahmad, F., Mayr, M., &amp; Krueger,
V. (2023). Learning to adapt the parameters of behavior trees and motion
generators (BTMGs) to task variations. 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 10133–10140.
https://doi.org/10.1109/IROS55552.2023.10341636</unstructured_citation>
</citation>
<citation key="springer:2016">
<volume_title>Springer handbook of robotics</volume_title>
<author>Siciliano</author>
<doi>10.1007/978-3-319-32552-1</doi>
<cYear>2016</cYear>
<unstructured_citation>Siciliano, B., &amp; Khatib, O.
(2016). Springer handbook of robotics. Springer, Berlin, Germany.
https://doi.org/10.1007/978-3-319-32552-1</unstructured_citation>
</citation>
<citation key="hogan:1985">
<article_title>Impedance control: An approach to
manipulation: Parts I–III</article_title>
<author>Hogan</author>
<journal_title>J. Dynamic Syst., Measurement, and
Control</journal_title>
<issue>1</issue>
<volume>107</volume>
<doi>10.1115/1.3140702</doi>
<cYear>1985</cYear>
<unstructured_citation>Hogan, N. (1985). Impedance control:
An approach to manipulation: Parts I–III. J. Dynamic Syst., Measurement,
and Control, 107(1), 1–24.
https://doi.org/10.1115/1.3140702</unstructured_citation>
</citation>
<citation key="ott:2008">
<volume_title>Cartesian impedance control of redundant and
flexible-joint robots</volume_title>
<author>Ott</author>
<cYear>2008</cYear>
<unstructured_citation>Ott, C. (2008). Cartesian impedance
control of redundant and flexible-joint robots. Springer, Berlin,
Germany.</unstructured_citation>
</citation>
<citation key="khatib:1995">
<article_title>Inertial properties in robotic manipulation:
An object-level framework</article_title>
<author>Khatib</author>
<journal_title>The International Journal of Robotics
Research</journal_title>
<issue>1</issue>
<volume>14</volume>
<doi>10.1177/027836499501400103</doi>
<cYear>1995</cYear>
<unstructured_citation>Khatib, O. (1995). Inertial
properties in robotic manipulation: An object-level framework. The
International Journal of Robotics Research, 14(1), 19–36.
https://doi.org/10.1177/027836499501400103</unstructured_citation>
</citation>
<citation key="ben:2003">
<volume_title>Generalized inverses: Theory and
applications</volume_title>
<author>Ben-Israel</author>
<doi>10.1007/b97366</doi>
<cYear>2003</cYear>
<unstructured_citation>Ben-Israel, A., &amp; Greville, T. N.
(2003). Generalized inverses: Theory and applications. Springer-Verlag,
New York, USA. https://doi.org/10.1007/b97366</unstructured_citation>
</citation>
<citation key="quigley:2009">
<article_title>ROS: An open-source robot operating
system</article_title>
<author>Quigley</author>
<journal_title>IEEE international conference on robotics and
automation (ICRA): Workshop on open source software</journal_title>
<cYear>2009</cYear>
<unstructured_citation>Quigley, M., Conley, K., Gerkey, B.,
Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A. Y., &amp; others.
(2009). ROS: An open-source robot operating system. IEEE International
Conference on Robotics and Automation (ICRA): Workshop on Open Source
Software.</unstructured_citation>
</citation>
<citation key="lawrence:1988">
<article_title>Impedance control stability properties in
common implementations</article_title>
<author>Lawrence</author>
<journal_title>IEEE international conference on robotics and
automation (ICRA)</journal_title>
<doi>10.1109/ROBOT.1988.12222</doi>
<cYear>1988</cYear>
<unstructured_citation>Lawrence, D. A. (1988). Impedance
control stability properties in common implementations. IEEE
International Conference on Robotics and Automation (ICRA), 1185–1190.
https://doi.org/10.1109/ROBOT.1988.12222</unstructured_citation>
</citation>
<citation key="ros_control">
<article_title>Ros_control: A generic and simple control
framework for ROS</article_title>
<author>Chitta</author>
<journal_title>The Journal of Open Source
Software</journal_title>
<doi>10.21105/joss.00456</doi>
<cYear>2017</cYear>
<unstructured_citation>Chitta, S., Marder-Eppstein, E.,
Meeussen, W., Pradeep, V., Rodríguez Tsouroukdissian, A., Bohren, J.,
Coleman, D., Magyar, B., Raiola, G., Lüdtke, M., &amp; Fernández
Perdomo, E. (2017). Ros_control: A generic and simple control framework
for ROS. The Journal of Open Source Software.
https://doi.org/10.21105/joss.00456</unstructured_citation>
</citation>
<citation key="Lee2018">
<article_title>DART: Dynamic animation and robotics
toolkit</article_title>
<author>Lee</author>
<journal_title>The Journal of Open Source
Software</journal_title>
<issue>22</issue>
<volume>3</volume>
<doi>10.21105/joss.00500</doi>
<cYear>2018</cYear>
<unstructured_citation>Lee, J., Grey, M. X., Ha, S., Kunz,
T., Jain, S., Ye, Y., Srinivasa, S. S., Stilman, M., &amp; Liu, C. K.
(2018). DART: Dynamic animation and robotics toolkit. The Journal of
Open Source Software, 3(22), 500.
https://doi.org/10.21105/joss.00500</unstructured_citation>
</citation>
<citation key="franka_ros">
<article_title>Franka Emika Panda – franka_ros
Documentation</article_title>
<author>Franka Emika</author>
<cYear>2017</cYear>
<unstructured_citation>Franka Emika. (2017). Franka Emika
Panda – franka_ros Documentation.
https://frankaemika.github.io/docs/franka_ros.html.</unstructured_citation>
</citation>
<citation key="libfranka">
<article_title>Franka Emika Panda – libfranka
Documentation</article_title>
<author>Franka Emika</author>
<cYear>2017</cYear>
<unstructured_citation>Franka Emika. (2017). Franka Emika
Panda – libfranka Documentation.
https://frankaemika.github.io/docs/libfranka.html.</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 04efe4f

Please sign in to comment.