Skip to content

Commit

Permalink
Merge pull request #5827 from openjournals/joss.06895
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Aug 28, 2024
2 parents f7c3c7a + 4f35619 commit 0449966
Show file tree
Hide file tree
Showing 6 changed files with 1,226 additions and 0 deletions.
397 changes: 397 additions & 0 deletions joss.06895/10.21105.joss.06895.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,397 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240828014251-214fa180d32fc94d42877a2e598c2c4681f6bd4a</doi_batch_id>
<timestamp>20240828014251</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>08</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>100</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>DWBuilder: A code to generate
ferroelectric/ferroelastic domain walls and multi-material atomic
interface structures</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Muhammad Z.</given_name>
<surname>Khalid</surname>
<ORCID>https://orcid.org/0000-0002-7866-3870</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Sverre M.</given_name>
<surname>Selbach</surname>
</person_name>
</contributors>
<publication_date>
<month>08</month>
<day>28</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6895</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06895</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.13367853</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6895</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06895</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06895</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06895.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="meier2022ferroelectric">
<article_title>Ferroelectric domain walls for
nanotechnology</article_title>
<author>Meier</author>
<journal_title>Nature Reviews Materials</journal_title>
<issue>3</issue>
<volume>7</volume>
<doi>10.1038/s41578-021-00375-z</doi>
<cYear>2022</cYear>
<unstructured_citation>Meier, D., &amp; Selbach, S. M.
(2022). Ferroelectric domain walls for nanotechnology. Nature Reviews
Materials, 7(3), 157–173.
https://doi.org/10.1038/s41578-021-00375-z</unstructured_citation>
</citation>
<citation key="catalan2012domain">
<article_title>Domain wall nanoelectronics</article_title>
<author>Catalan</author>
<journal_title>Reviews of Modern Physics</journal_title>
<issue>1</issue>
<volume>84</volume>
<doi>10.1103/RevModPhys.84.119</doi>
<cYear>2012</cYear>
<unstructured_citation>Catalan, G., Seidel, J., Ramesh, R.,
&amp; Scott, J. F. (2012). Domain wall nanoelectronics. Reviews of
Modern Physics, 84(1), 119.
https://doi.org/10.1103/RevModPhys.84.119</unstructured_citation>
</citation>
<citation key="meier2015functional">
<article_title>Functional domain walls in
multiferroics</article_title>
<author>Meier</author>
<journal_title>Journal of Physics: Condensed
Matter</journal_title>
<issue>46</issue>
<volume>27</volume>
<doi>10.1088/0953-8984/27/46/463003</doi>
<cYear>2015</cYear>
<unstructured_citation>Meier, D. (2015). Functional domain
walls in multiferroics. Journal of Physics: Condensed Matter, 27(46),
463003.
https://doi.org/10.1088/0953-8984/27/46/463003</unstructured_citation>
</citation>
<citation key="bednyakov2018physics">
<article_title>Physics and applications of charged domain
walls</article_title>
<author>Bednyakov</author>
<journal_title>npj Computational Materials</journal_title>
<issue>1</issue>
<volume>4</volume>
<doi>10.1038/s41524-018-0121-8</doi>
<cYear>2018</cYear>
<unstructured_citation>Bednyakov, P. S., Sturman, B. I.,
Sluka, T., Tagantsev, A. K., &amp; Yudin, P. V. (2018). Physics and
applications of charged domain walls. Npj Computational Materials, 4(1),
1–11. https://doi.org/10.1038/s41524-018-0121-8</unstructured_citation>
</citation>
<citation key="whyte2015diode">
<article_title>A diode for ferroelectric domain-wall
motion</article_title>
<author>Whyte</author>
<journal_title>Nature Communications</journal_title>
<issue>1</issue>
<volume>6</volume>
<doi>10.1038/ncomms8361</doi>
<cYear>2015</cYear>
<unstructured_citation>Whyte, J., &amp; Gregg, J. (2015). A
diode for ferroelectric domain-wall motion. Nature Communications, 6(1),
1–5. https://doi.org/10.1038/ncomms8361</unstructured_citation>
</citation>
<citation key="mundy2017functional">
<article_title>Functional electronic inversion layers at
ferroelectric domain walls</article_title>
<author>Mundy</author>
<journal_title>Nature materials</journal_title>
<issue>6</issue>
<volume>16</volume>
<doi>10.1038/nmat4878</doi>
<cYear>2017</cYear>
<unstructured_citation>Mundy, J. A., Schaab, J., Kumagai,
Y., Cano, A., Stengel, M., Krug, I. P., Gottlob, D., Doğanay, H., Holtz,
M. E., Held, R., &amp; others. (2017). Functional electronic inversion
layers at ferroelectric domain walls. Nature Materials, 16(6), 622–627.
https://doi.org/10.1038/nmat4878</unstructured_citation>
</citation>
<citation key="sharma2017nonvolatile">
<article_title>Nonvolatile ferroelectric domain wall
memory</article_title>
<author>Sharma</author>
<journal_title>Science advances</journal_title>
<issue>6</issue>
<volume>3</volume>
<doi>10.1126/sciadv.1700512</doi>
<cYear>2017</cYear>
<unstructured_citation>Sharma, P., Zhang, Q., Sando, D.,
Lei, C. H., Liu, Y., Li, J., Nagarajan, V., &amp; Seidel, J. (2017).
Nonvolatile ferroelectric domain wall memory. Science Advances, 3(6),
e1700512. https://doi.org/10.1126/sciadv.1700512</unstructured_citation>
</citation>
<citation key="schultheiss2020intrinsic">
<article_title>Intrinsic and extrinsic conduction
contributions at nominally neutral domain walls in hexagonal
manganites</article_title>
<author>Schultheiß</author>
<journal_title>Applied Physics Letters</journal_title>
<issue>26</issue>
<volume>116</volume>
<doi>10.1063/5.0009185</doi>
<cYear>2020</cYear>
<unstructured_citation>Schultheiß, J., Schaab, J.,
Småbråten, D. R., Skjærvø, S. H., Bourret, E., Yan, Z., Selbach, S. M.,
&amp; Meier, D. (2020). Intrinsic and extrinsic conduction contributions
at nominally neutral domain walls in hexagonal manganites. Applied
Physics Letters, 116(26), 262903.
https://doi.org/10.1063/5.0009185</unstructured_citation>
</citation>
<citation key="smaabraaten2020domain">
<article_title>Domain wall mobility and roughening in doped
ferroelectric hexagonal manganites</article_title>
<author>Småbråten</author>
<journal_title>Physical Review Research</journal_title>
<issue>3</issue>
<volume>2</volume>
<doi>10.1103/PhysRevResearch.2.033159</doi>
<cYear>2020</cYear>
<unstructured_citation>Småbråten, D. R., Holstad, T. S.,
Evans, D. M., Yan, Z., Bourret, E., Meier, D., &amp; Selbach, S. M.
(2020). Domain wall mobility and roughening in doped ferroelectric
hexagonal manganites. Physical Review Research, 2(3), 033159.
https://doi.org/10.1103/PhysRevResearch.2.033159</unstructured_citation>
</citation>
<citation key="smaabraaten2018charged">
<article_title>Charged domain walls in improper
ferroelectric hexagonal manganites and gallates</article_title>
<author>Småbråten</author>
<journal_title>Physical Review Materials</journal_title>
<issue>11</issue>
<volume>2</volume>
<doi>10.1103/PhysRevMaterials.2.114405</doi>
<cYear>2018</cYear>
<unstructured_citation>Småbråten, D. R., Meier, Q. N.,
Skjærvø, S. H., Inzani, K., Meier, D., &amp; Selbach, S. M. (2018).
Charged domain walls in improper ferroelectric hexagonal manganites and
gallates. Physical Review Materials, 2(11), 114405.
https://doi.org/10.1103/PhysRevMaterials.2.114405</unstructured_citation>
</citation>
<citation key="ederer2005effect">
<article_title>Effect of epitaxial strain on the spontaneous
polarization of thin film ferroelectrics</article_title>
<author>Ederer</author>
<journal_title>Physical review letters</journal_title>
<issue>25</issue>
<volume>95</volume>
<doi>10.1103/PhysRevLett.95.257601</doi>
<cYear>2005</cYear>
<unstructured_citation>Ederer, C., &amp; Spaldin, N. A.
(2005). Effect of epitaxial strain on the spontaneous polarization of
thin film ferroelectrics. Physical Review Letters, 95(25), 257601.
https://doi.org/10.1103/PhysRevLett.95.257601</unstructured_citation>
</citation>
<citation key="wang2003epitaxial">
<article_title>Epitaxial BiFeO_3 multiferroic thin film
heterostructures</article_title>
<author>Wang</author>
<journal_title>science</journal_title>
<issue>5613</issue>
<volume>299</volume>
<doi>10.1126/science.1080615</doi>
<cYear>2003</cYear>
<unstructured_citation>Wang, J., Neaton, J., Zheng, H.,
Nagarajan, V., Ogale, S., Liu, B., Viehland, D., Vaithyanathan, V.,
Schlom, D., Waghmare, U., &amp; others. (2003). Epitaxial BiFeO_3
multiferroic thin film heterostructures. Science, 299(5613), 1719–1722.
https://doi.org/10.1126/science.1080615</unstructured_citation>
</citation>
<citation key="taherinejad2012bloch">
<article_title>Bloch-type domain walls in rhombohedral
BaTiO_3</article_title>
<author>Taherinejad</author>
<journal_title>Physical Review B</journal_title>
<issue>15</issue>
<volume>86</volume>
<doi>10.1103/PhysRevB.86.155138</doi>
<cYear>2012</cYear>
<unstructured_citation>Taherinejad, M., Vanderbilt, D.,
Marton, P., Stepkova, V., &amp; Hlinka, J. (2012). Bloch-type domain
walls in rhombohedral BaTiO_3. Physical Review B, 86(15), 155138.
https://doi.org/10.1103/PhysRevB.86.155138</unstructured_citation>
</citation>
<citation key="meyer2002ab">
<article_title>Ab initio study of ferroelectric domain walls
in PbTiO_3</article_title>
<author>Meyer</author>
<journal_title>Physical Review B</journal_title>
<issue>10</issue>
<volume>65</volume>
<doi>10.1103/PhysRevB.65.104111</doi>
<cYear>2002</cYear>
<unstructured_citation>Meyer, B., &amp; Vanderbilt, D.
(2002). Ab initio study of ferroelectric domain walls in PbTiO_3.
Physical Review B, 65(10), 104111.
https://doi.org/10.1103/PhysRevB.65.104111</unstructured_citation>
</citation>
<citation key="barone2014improper">
<article_title>Improper origin of polar displacements at
CaTiO_3 and CaMnO_3 twin walls</article_title>
<author>Barone</author>
<journal_title>Physical Review B</journal_title>
<issue>14</issue>
<volume>89</volume>
<doi>10.1103/PhysRevB.89.144104</doi>
<cYear>2014</cYear>
<unstructured_citation>Barone, P., Di Sante, D., &amp;
Picozzi, S. (2014). Improper origin of polar displacements at CaTiO_3
and CaMnO_3 twin walls. Physical Review B, 89(14), 144104.
https://doi.org/10.1103/PhysRevB.89.144104</unstructured_citation>
</citation>
<citation key="zhang2005edge">
<article_title>Edge-to-edge matching model for predicting
orientation relationships and habit planes—the
improvements</article_title>
<author>Zhang</author>
<journal_title>Scripta Materialia</journal_title>
<issue>10</issue>
<volume>52</volume>
<doi>10.1016/j.scriptamat.2005.01.040</doi>
<cYear>2005</cYear>
<unstructured_citation>Zhang, M.-X., &amp; Kelly, P. (2005).
Edge-to-edge matching model for predicting orientation relationships and
habit planes—the improvements. Scripta Materialia, 52(10), 963–968.
https://doi.org/10.1016/j.scriptamat.2005.01.040</unstructured_citation>
</citation>
<citation key="khalid2020atomistic">
<article_title>Atomistic modelling of Fe-Al and
\alpha-AlFeSi intermetallic compound interfaces</article_title>
<author>Khalid</author>
<cYear>2020</cYear>
<unstructured_citation>Khalid, M. Z. (2020). Atomistic
modelling of Fe-Al and \alpha-AlFeSi intermetallic compound interfaces
[Doctoral thesis]. Norwegian University of Science &amp; Technology
(NTNU), Trondheim, Norway, March 2020.</unstructured_citation>
</citation>
<citation key="khalid2020ab">
<article_title>Ab-initio study of atomic structure and
mechanical behaviour of Al/Fe intermetallic interfaces</article_title>
<author>Khalid</author>
<journal_title>Computational Materials
Science</journal_title>
<volume>174</volume>
<doi>10.1016/j.commatsci.2019.109481</doi>
<cYear>2020</cYear>
<unstructured_citation>Khalid, M. Z., Friis, J., Ninive, P.
H., Marthinsen, K., &amp; Strandlie, A. (2020). Ab-initio study of
atomic structure and mechanical behaviour of Al/Fe intermetallic
interfaces. Computational Materials Science, 174, 109481.
https://doi.org/10.1016/j.commatsci.2019.109481</unstructured_citation>
</citation>
<citation key="khalid2021imc">
<article_title>First-principles study of tensile and shear
strength of Fe-Al and \alpha-AlFeSi intermetallic compound
interfaces</article_title>
<author>Khalid</author>
<journal_title>Computational Materials
Science</journal_title>
<volume>187</volume>
<doi>10.1016/j.commatsci.2020.110058</doi>
<cYear>2021</cYear>
<unstructured_citation>Khalid, M. Z., Friis, J., Ninive, P.
H., Marthinsen, K., &amp; Strandlie, A. (2021). First-principles study
of tensile and shear strength of Fe-Al and \alpha-AlFeSi intermetallic
compound interfaces. Computational Materials Science, 187, 110058.
https://doi.org/10.1016/j.commatsci.2020.110058</unstructured_citation>
</citation>
<citation key="khalid2021first">
<article_title>First-principles study of tensile and shear
strength of an Fe_2Al_5//Fe interface</article_title>
<author>Khalid</author>
<journal_title>Computational Materials
Science</journal_title>
<volume>192</volume>
<doi>10.1016/j.commatsci.2021.110319</doi>
<cYear>2021</cYear>
<unstructured_citation>Khalid, M. Z., Friis, J., Ninive, P.
H., Marthinsen, K., Ringdalen, I. G., &amp; Strandlie, A. (2021).
First-principles study of tensile and shear strength of an Fe_2Al_5//Fe
interface. Computational Materials Science, 192, 110319.
https://doi.org/10.1016/j.commatsci.2021.110319</unstructured_citation>
</citation>
<citation key="mzkhalid2019first">
<article_title>A first-principles study of the
Al(001)/Fe(0-11) interface</article_title>
<author>Khalid</author>
<journal_title>Materials science forum</journal_title>
<volume>941</volume>
<doi>10.4028/www.scientific.net/MSF.941.2349</doi>
<cYear>2019</cYear>
<unstructured_citation>Khalid, M. Z., Friis, J., Ninive, P.
H., Marthinsen, K., &amp; Strandlie, A. (2019). A first-principles study
of the Al(001)/Fe(0-11) interface. Materials Science Forum, 941,
2349–2355.
https://doi.org/10.4028/www.scientific.net/MSF.941.2349</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06895/10.21105.joss.06895.pdf
Binary file not shown.
Loading

0 comments on commit 0449966

Please sign in to comment.