Skip to content

Commit

Permalink
Merge pull request #4854 from openjournals/joss.05735
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Dec 18, 2023
2 parents b4250bf + e200b5a commit 034f88e
Show file tree
Hide file tree
Showing 3 changed files with 920 additions and 0 deletions.
363 changes: 363 additions & 0 deletions joss.05735/10.21105.joss.05735.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,363 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20231218T180814-34a5f04fecfc0befd24ee48f5ac11a6bef80e6e6</doi_batch_id>
<timestamp>20231218180814</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>12</month>
<year>2023</year>
</publication_date>
<journal_volume>
<volume>8</volume>
</journal_volume>
<issue>92</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>parafields: A generator for distributed, stationary
Gaussian processes</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Dominic</given_name>
<surname>Kempf</surname>
<ORCID>https://orcid.org/0000-0002-6140-2332</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Ole</given_name>
<surname>Klein</surname>
<ORCID>https://orcid.org/0000-0002-3295-7347</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Robert</given_name>
<surname>Kutri</surname>
<ORCID>https://orcid.org/0009-0004-8123-4673</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Robert</given_name>
<surname>Scheichl</surname>
<ORCID>https://orcid.org/0000-0001-8493-4393</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Peter</given_name>
<surname>Bastian</surname>
</person_name>
</contributors>
<publication_date>
<month>12</month>
<day>18</day>
<year>2023</year>
</publication_date>
<pages>
<first_page>5735</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05735</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10355636</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5735</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05735</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05735</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05735.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="dietrich1997fast">
<article_title>Fast and exact simulation of stationary
Gaussian processes through circulant embedding of the covariance
matrix</article_title>
<author>Dietrich</author>
<journal_title>SIAM Journal on Scientific
Computing</journal_title>
<issue>4</issue>
<volume>18</volume>
<doi>10.1137/s1064827592240555</doi>
<cYear>1997</cYear>
<unstructured_citation>Dietrich, C. R., &amp; Newsam, G. N.
(1997). Fast and exact simulation of stationary Gaussian processes
through circulant embedding of the covariance matrix. SIAM Journal on
Scientific Computing, 18(4), 1088–1107.
https://doi.org/10.1137/s1064827592240555</unstructured_citation>
</citation>
<citation key="parafields-core">
<article_title>parafields-core</article_title>
<author>Klein</author>
<journal_title>GitHub repository</journal_title>
<cYear>2022</cYear>
<unstructured_citation>Klein, O., &amp; Kempf, D. (2022).
parafields-core. In GitHub repository. GitHub.
https://github.com/parafields/parafields-core</unstructured_citation>
</citation>
<citation key="mpi4py">
<article_title>mpi4py: Status update after 12 years of
development</article_title>
<author>Dalcin</author>
<journal_title>Computing in Science &amp;
Engineering</journal_title>
<issue>4</issue>
<volume>23</volume>
<doi>10.1109/MCSE.2021.3083216</doi>
<cYear>2021</cYear>
<unstructured_citation>Dalcin, L., &amp; Fang, Y.-L. L.
(2021). mpi4py: Status update after 12 years of development. Computing
in Science &amp; Engineering, 23(4), 47–54.
https://doi.org/10.1109/MCSE.2021.3083216</unstructured_citation>
</citation>
<citation key="dune">
<article_title>The dune framework: Basic concepts and recent
developments</article_title>
<author>Bastian</author>
<journal_title>Computers &amp; Mathematics with
Applications</journal_title>
<volume>81</volume>
<doi>10.1016/j.camwa.2020.06.007</doi>
<issn>0898-1221</issn>
<cYear>2021</cYear>
<unstructured_citation>Bastian, P., Blatt, M., Dedner, A.,
Dreier, N.-A., Engwer, C., Fritze, R., Gräser, C., Grüninger, C., Kempf,
D., Klöfkorn, R., Ohlberger, M., &amp; Sander, O. (2021). The dune
framework: Basic concepts and recent developments. Computers &amp;
Mathematics with Applications, 81, 75–112.
https://doi.org/10.1016/j.camwa.2020.06.007</unstructured_citation>
</citation>
<citation key="pybind11">
<article_title>pybind11 – seamless operability between C++11
and Python</article_title>
<author>Jakob</author>
<cYear>2017</cYear>
<unstructured_citation>Jakob, W., Rhinelander, J., &amp;
Moldovan, D. (2017). pybind11 – seamless operability between C++11 and
Python.</unstructured_citation>
</citation>
<citation key="dune-randomfield">
<article_title>Dune-randomfield - generation of Gaussian
random fields in arbitrary dimensions, based on circulant
embedding</article_title>
<author>Klein</author>
<cYear>2017</cYear>
<unstructured_citation>Klein, O. (2017). Dune-randomfield -
generation of Gaussian random fields in arbitrary dimensions, based on
circulant embedding.</unstructured_citation>
</citation>
<citation key="fakempi">
<article_title>FakeMPI - a sequential MPI
stub</article_title>
<author>Kempf</author>
<cYear>2022</cYear>
<unstructured_citation>Kempf, D., &amp; PetSc Developers,
the. (2022). FakeMPI - a sequential MPI stub.</unstructured_citation>
</citation>
<citation key="scikit-build">
<article_title>jcfr/scipy_2018_scikit-build_talk: SciPy 2018
talk | scikit-build: A build system generator for CPython
C/C++/Fortran/Cython extensions</article_title>
<author>Fillion-Robin</author>
<doi>10.5281/zenodo.2565368</doi>
<cYear>2018</cYear>
<unstructured_citation>Fillion-Robin, J.-C., McCormick, M.,
Padron, O., Smolens, M., Grauer, M., &amp; Sarahan, M. (2018).
jcfr/scipy_2018_scikit-build_talk: SciPy 2018 talk | scikit-build: A
build system generator for CPython C/C++/Fortran/Cython extensions
(Version v1.0). Zenodo.
https://doi.org/10.5281/zenodo.2565368</unstructured_citation>
</citation>
<citation key="wood1994simulation">
<article_title>Simulation of stationary Gaussian processes
in [0, 1] d</article_title>
<author>Wood</author>
<journal_title>Journal of computational and graphical
statistics</journal_title>
<issue>4</issue>
<volume>3</volume>
<doi>10.2307/1390903</doi>
<cYear>1994</cYear>
<unstructured_citation>Wood, A. T., &amp; Chan, G. (1994).
Simulation of stationary Gaussian processes in [0, 1] d. Journal of
Computational and Graphical Statistics, 3(4), 409–432.
https://doi.org/10.2307/1390903</unstructured_citation>
</citation>
<citation key="davies2013lgcp">
<article_title>On circulant embedding for Gaussian random
fields in R</article_title>
<author>Davies</author>
<journal_title>Journal of Statistical
Software</journal_title>
<issue>9</issue>
<volume>55</volume>
<doi>10.18637/jss.v055.i09</doi>
<cYear>2013</cYear>
<unstructured_citation>Davies, T. M., &amp; Bryant, D.
(2013). On circulant embedding for Gaussian random fields in R. Journal
of Statistical Software, 55(9), 1–21.
https://doi.org/10.18637/jss.v055.i09</unstructured_citation>
</citation>
<citation key="robbe2023grfjl">
<article_title>GaussianRandomFields.jl: A Julia package to
generate and sample from Gaussian random fields</article_title>
<author>Robbe</author>
<journal_title>Journal of Open Source
Software</journal_title>
<issue>89</issue>
<volume>8</volume>
<doi>10.21105/joss.05595</doi>
<cYear>2023</cYear>
<unstructured_citation>Robbe, P. (2023).
GaussianRandomFields.jl: A Julia package to generate and sample from
Gaussian random fields. Journal of Open Source Software, 8(89), 5595.
https://doi.org/10.21105/joss.05595</unstructured_citation>
</citation>
<citation key="mueller2022gstools">
<article_title>GSTools v1.3: A toolbox for geostatistical
modelling in Python</article_title>
<author>Müller</author>
<journal_title>Geoscientific Model
Development</journal_title>
<issue>7</issue>
<volume>15</volume>
<doi>10.5194/gmd-15-3161-2022</doi>
<cYear>2022</cYear>
<unstructured_citation>Müller, S., Schüler, L., Zech, A.,
&amp; Heße, F. (2022). GSTools v1.3: A toolbox for geostatistical
modelling in Python. Geoscientific Model Development, 15(7), 3161–3182.
https://doi.org/10.5194/gmd-15-3161-2022</unstructured_citation>
</citation>
<citation key="cameletti2013spatio">
<article_title>Spatio-temporal modeling of particulate
matter concentration through the SPDE approach</article_title>
<author>Cameletti</author>
<journal_title>AStA Advances in Statistical
Analysis</journal_title>
<volume>97</volume>
<doi>10.1007/s10182-012-0196-3</doi>
<cYear>2013</cYear>
<unstructured_citation>Cameletti, M., Lindgren, F., Simpson,
D., &amp; Rue, H. (2013). Spatio-temporal modeling of particulate matter
concentration through the SPDE approach. AStA Advances in Statistical
Analysis, 97, 109–131.
https://doi.org/10.1007/s10182-012-0196-3</unstructured_citation>
</citation>
<citation key="sain2011spatial">
<article_title>A spatial analysis of multivariate output
from regional climate models</article_title>
<author>Sain</author>
<journal_title>The Annals of Applied
Statistics</journal_title>
<doi>10.1214/10-AOAS369</doi>
<cYear>2011</cYear>
<unstructured_citation>Sain, S. R., Furrer, R., &amp;
Cressie, N. (2011). A spatial analysis of multivariate output from
regional climate models. The Annals of Applied Statistics, 150–175.
https://doi.org/10.1214/10-AOAS369</unstructured_citation>
</citation>
<citation key="dodwell2015hierarchical">
<article_title>A hierarchical multilevel Markov chain Monte
Carlo algorithm with applications to uncertainty quantification in
subsurface flow</article_title>
<author>Dodwell</author>
<journal_title>SIAM/ASA Journal on Uncertainty
Quantification</journal_title>
<issue>1</issue>
<volume>3</volume>
<doi>10.1137/130915005</doi>
<cYear>2015</cYear>
<unstructured_citation>Dodwell, T. J., Ketelsen, C.,
Scheichl, R., &amp; Teckentrup, A. L. (2015). A hierarchical multilevel
Markov chain Monte Carlo algorithm with applications to uncertainty
quantification in subsurface flow. SIAM/ASA Journal on Uncertainty
Quantification, 3(1), 1075–1108.
https://doi.org/10.1137/130915005</unstructured_citation>
</citation>
<citation key="penny2005bayesian">
<article_title>Bayesian fMRI time series analysis with
spatial priors</article_title>
<author>Penny</author>
<journal_title>NeuroImage</journal_title>
<issue>2</issue>
<volume>24</volume>
<doi>10.1016/j.neuroimage.2004.08.034</doi>
<cYear>2005</cYear>
<unstructured_citation>Penny, W. D., Trujillo-Barreto, N.
J., &amp; Friston, K. J. (2005). Bayesian fMRI time series analysis with
spatial priors. NeuroImage, 24(2), 350–362.
https://doi.org/10.1016/j.neuroimage.2004.08.034</unstructured_citation>
</citation>
<citation key="torquato2002random">
<article_title>Random heterogeneous materials:
Microstructure and macroscopic properties</article_title>
<author>Torquato</author>
<journal_title>Appl. Mech. Rev.</journal_title>
<issue>4</issue>
<volume>55</volume>
<doi>10.1115/1.1483342</doi>
<cYear>2002</cYear>
<unstructured_citation>Torquato, S., &amp; Haslach Jr, H.
(2002). Random heterogeneous materials: Microstructure and macroscopic
properties. Appl. Mech. Rev., 55(4), B62–B63.
https://doi.org/10.1115/1.1483342</unstructured_citation>
</citation>
<citation key="scheichl2017quasi">
<article_title>Quasi-monte carlo and multilevel Monte Carlo
methods for computing posterior expectations in elliptic inverse
problems</article_title>
<author>Scheichl</author>
<journal_title>SIAM/ASA Journal on Uncertainty
Quantification</journal_title>
<issue>1</issue>
<volume>5</volume>
<doi>10.1137/16m1061692</doi>
<cYear>2017</cYear>
<unstructured_citation>Scheichl, R., Stuart, A. M., &amp;
Teckentrup, A. L. (2017). Quasi-monte carlo and multilevel Monte Carlo
methods for computing posterior expectations in elliptic inverse
problems. SIAM/ASA Journal on Uncertainty Quantification, 5(1), 493–518.
https://doi.org/10.1137/16m1061692</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 034f88e

Please sign in to comment.