Skip to content

Commit

Permalink
Creating 10.21105.joss.06753.crossref.xml
Browse files Browse the repository at this point in the history
  • Loading branch information
editorialbot committed Oct 17, 2024
1 parent 05d87db commit 02191d2
Showing 1 changed file with 274 additions and 0 deletions.
274 changes: 274 additions & 0 deletions joss.06753/10.21105.joss.06753.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,274 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20241017163917-4f4fe0a5a17aadd329d49a1d4b8b2a9d29d99cdc</doi_batch_id>
<timestamp>20241017163917</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>10</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>102</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>MODULO: A Python toolbox for data-driven modal
decomposition</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>R.</given_name>
<surname>Poletti</surname>
<ORCID>https://orcid.org/0000-0003-3566-6956</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>L.</given_name>
<surname>Schena</surname>
<ORCID>https://orcid.org/0000-0002-7183-0242</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>D.</given_name>
<surname>Ninni</surname>
<ORCID>https://orcid.org/0000-0002-7179-3322</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>M. A.</given_name>
<surname>Mendez</surname>
<ORCID>https://orcid.org/0000-0002-1115-2187</ORCID>
</person_name>
</contributors>
<publication_date>
<month>10</month>
<day>17</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6753</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06753</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.13939520</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6753</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06753</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06753</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06753.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="sieber_paschereit_oberleithner_2016">
<article_title>Spectral proper orthogonal
decomposition</article_title>
<author>Sieber</author>
<journal_title>Journal of Fluid Mechanics</journal_title>
<volume>792</volume>
<doi>10.1017/jfm.2016.103</doi>
<cYear>2016</cYear>
<unstructured_citation>Sieber, M., Paschereit, C. O., &amp;
Oberleithner, K. (2016). Spectral proper orthogonal decomposition.
Journal of Fluid Mechanics, 792, 798–828.
https://doi.org/10.1017/jfm.2016.103</unstructured_citation>
</citation>
<citation key="berkooz_proper_1993">
<article_title>POD preprocessing of IR thermal data to
assess heat source distributions</article_title>
<author>Ranc</author>
<journal_title>Experimental Mechanics</journal_title>
<volume>55</volume>
<doi>10.1007/s11340-014-9858-2</doi>
<cYear>2014</cYear>
<unstructured_citation>Ranc, N., Blanche, A., Ryckelynck,
D., &amp; Chrysochoos, A. (2014). POD preprocessing of IR thermal data
to assess heat source distributions. Experimental Mechanics, 55,
725–739.
https://doi.org/10.1007/s11340-014-9858-2</unstructured_citation>
</citation>
<citation key="ninni_modulo_2020">
<article_title>MODULO: A software for multiscale proper
orthogonal decomposition of data</article_title>
<author>Ninni</author>
<journal_title>SoftwareX</journal_title>
<volume>12</volume>
<doi>10.1016/j.softx.2020.100622</doi>
<cYear>2020</cYear>
<unstructured_citation>Ninni, D., &amp; Mendez, M. A.
(2020). MODULO: A software for multiscale proper orthogonal
decomposition of data. SoftwareX, 12, 100622.
https://doi.org/10.1016/j.softx.2020.100622</unstructured_citation>
</citation>
<citation key="mendez_balabane_buchlin_2019">
<article_title>Multi-scale proper orthogonal decomposition
of complex fluid flows</article_title>
<author>Mendez</author>
<journal_title>Journal of Fluid Mechanics</journal_title>
<volume>870</volume>
<doi>10.1017/jfm.2019.212</doi>
<cYear>2019</cYear>
<unstructured_citation>Mendez, M. A., Balabane, M., &amp;
Buchlin, J.-M. (2019). Multi-scale proper orthogonal decomposition of
complex fluid flows. Journal of Fluid Mechanics, 870, 988–1036.
https://doi.org/10.1017/jfm.2019.212</unstructured_citation>
</citation>
<citation key="schmid_2010">
<article_title>Dynamic mode decomposition of numerical and
experimental data</article_title>
<author>Schmid</author>
<journal_title>Journal of Fluid Mechanics</journal_title>
<volume>656</volume>
<doi>10.1017/S0022112010001217</doi>
<cYear>2010</cYear>
<unstructured_citation>Schmid, P. J. (2010). Dynamic mode
decomposition of numerical and experimental data. Journal of Fluid
Mechanics, 656, 5–28.
https://doi.org/10.1017/S0022112010001217</unstructured_citation>
</citation>
<citation key="Towne_2018">
<article_title>Spectral proper orthogonal decomposition and
its relationship to dynamic mode decomposition and resolvent
analysis</article_title>
<author>Towne</author>
<journal_title>Journal of Fluid Mechanics</journal_title>
<volume>847</volume>
<doi>10.1017/jfm.2018.283</doi>
<cYear>2018</cYear>
<unstructured_citation>Towne, A., Schmidt, O. T., &amp;
Colonius, T. (2018). Spectral proper orthogonal decomposition and its
relationship to dynamic mode decomposition and resolvent analysis.
Journal of Fluid Mechanics, 847, 821–867.
https://doi.org/10.1017/jfm.2018.283</unstructured_citation>
</citation>
<citation key="mendez_2023">
<article_title>Linear and nonlinear dimensionality reduction
from fluid mechanics to machine learning</article_title>
<author>Mendez</author>
<journal_title>Measurement Science and
Technology</journal_title>
<volume>34</volume>
<doi>10.1088/1361-6501/acaffe</doi>
<cYear>2023</cYear>
<unstructured_citation>Mendez, M. A. (2023). Linear and
nonlinear dimensionality reduction from fluid mechanics to machine
learning. Measurement Science and Technology, 34, 042001.
https://doi.org/10.1088/1361-6501/acaffe</unstructured_citation>
</citation>
<citation key="Taira2020">
<article_title>Modal analysis of fluid flows: Applications
and outlook</article_title>
<author>Taira</author>
<journal_title>AIAA Journal</journal_title>
<issue>3</issue>
<volume>58</volume>
<doi>10.2514/1.J058462</doi>
<cYear>2020</cYear>
<unstructured_citation>Taira, K., Hemati, M. S., Brunton, S.
L., Sun, Y., Duraisamy, K., Bagheri, S., Dawson, S. T. M., &amp; Yeh,
C.-A. (2020). Modal analysis of fluid flows: Applications and outlook.
AIAA Journal, 58(3), 998–1022.
https://doi.org/10.2514/1.J058462</unstructured_citation>
</citation>
<citation key="py_DMD">
<article_title>PyDMD: Python dynamic mode
decomposition</article_title>
<author>Demo</author>
<journal_title>Journal of Open Source
Software</journal_title>
<issue>22</issue>
<volume>3</volume>
<doi>10.21105/joss.00530</doi>
<cYear>2018</cYear>
<unstructured_citation>Demo, N., Tezzele, M., &amp; Rozza,
G. (2018). PyDMD: Python dynamic mode decomposition. Journal of Open
Source Software, 3(22), 530.
https://doi.org/10.21105/joss.00530</unstructured_citation>
</citation>
<citation key="Mengaldo2021">
<article_title>PySPOD: A Python package for Spectral Proper
Orthogonal Decomposition (SPOD)</article_title>
<author>Mengaldo</author>
<journal_title>Journal of Open Source
Software</journal_title>
<issue>60</issue>
<volume>6</volume>
<doi>10.21105/joss.02862</doi>
<cYear>2021</cYear>
<unstructured_citation>Mengaldo, G., &amp; Maulik, R.
(2021). PySPOD: A Python package for Spectral Proper Orthogonal
Decomposition (SPOD). Journal of Open Source Software, 6(60), 2862.
https://doi.org/10.21105/joss.02862</unstructured_citation>
</citation>
<citation key="SpyOD">
<article_title>Spectral proper orthogonal
decomposition</article_title>
<author>Hatzissawidis</author>
<cYear>2023</cYear>
<unstructured_citation>Hatzissawidis, G., &amp; Sieber, M.
(2023). Spectral proper orthogonal decomposition.
https://github.com/grigorishat/SPyOD.</unstructured_citation>
</citation>
<citation key="rogowski2024unlocking">
<article_title>Unlocking massively parallel spectral proper
orthogonal decompositions in the PySPOD package</article_title>
<author>Rogowski</author>
<journal_title>Computer Physics
Communications</journal_title>
<volume>302</volume>
<doi>10.1016/j.cpc.2024.109246</doi>
<issn>0010-4655</issn>
<cYear>2024</cYear>
<unstructured_citation>Rogowski, M., Yeung, B. C. Y.,
Schmidt, O. T., Maulik, R., Dalcin, L., Parsani, M., &amp; Mengaldo, G.
(2024). Unlocking massively parallel spectral proper orthogonal
decompositions in the PySPOD package. Computer Physics Communications,
302, 109246.
https://doi.org/10.1016/j.cpc.2024.109246</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>

0 comments on commit 02191d2

Please sign in to comment.