Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added compose example for VisualQnA deployment on AMD ROCm systems #1201

156 changes: 156 additions & 0 deletions VisualQnA/docker_compose/amd/gpu/rocm/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,156 @@
# Build Mega Service of VisualQnA on AMD ROCm

This document outlines the deployment process for a VisualQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Xeon server. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as `llm`. We will publish the Docker images to Docker Hub soon, it will simplify the deployment process for this service.

## 🚀 Build Docker Images

First of all, you need to build Docker Images locally and install the python package of it.

### 1. Build LVM and NGINX Docker Images

```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build --no-cache -t opea/lvm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/lvms/tgi-llava/Dockerfile .
docker build --no-cache -t opea/nginx:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/nginx/Dockerfile .
```

### 2. Build MegaService Docker Image

To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `visualqna.py` Python script. Build MegaService Docker image via below command:

```bash
git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/VisualQnA
docker build --no-cache -t opea/visualqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
```

### 3. Build UI Docker Image

Build frontend Docker image via below command:

```bash
cd GenAIExamples/VisualQnA/ui
docker build --no-cache -t opea/visualqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile .
```

### 4. Pull TGI AMD ROCm Image

```bash
docker pull ghcr.io/huggingface/text-generation-inference:2.4.1-rocm
```

Then run the command `docker images`, you will have the following 5 Docker Images:

1. `ghcr.io/huggingface/text-generation-inference:2.4.1-rocm`
2. `opea/lvm-tgi:latest`
3. `opea/visualqna:latest`
4. `opea/visualqna-ui:latest`
5. `opea/nginx`

## 🚀 Start Microservices

### Setup Environment Variables

Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below.

**Export the value of the public IP address of your ROCM server to the `host_ip` environment variable**

> Change the External_Public_IP below with the actual IPV4 value

```
export host_ip="External_Public_IP"
```

**Append the value of the public IP address to the no_proxy list**

```
export your_no_proxy="${your_no_proxy},${host_ip}"
```

```bash
export HOST_IP=${your_host_ip}
export VISUALQNA_TGI_SERVICE_PORT="8399"
export VISUALQNA_HUGGINGFACEHUB_API_TOKEN={your_hugginface_api_token}
export VISUALQNA_CARD_ID="card1"
export VISUALQNA_RENDER_ID="renderD136"
export LVM_MODEL_ID="Xkev/Llama-3.2V-11B-cot"
export MODEL="llava-hf/llava-v1.6-mistral-7b-hf"
export LVM_ENDPOINT="http://${HOST_IP}:8399"
export LVM_SERVICE_PORT=9399
export MEGA_SERVICE_HOST_IP=${HOST_IP}
export LVM_SERVICE_HOST_IP=${HOST_IP}
export BACKEND_SERVICE_ENDPOINT="http://${HOST_IP}:18003/v1/visualqna"
export FRONTEND_SERVICE_IP=${HOST_IP}
export FRONTEND_SERVICE_PORT=18001
export BACKEND_SERVICE_NAME=visualqna
export BACKEND_SERVICE_IP=${HOST_IP}
export BACKEND_SERVICE_PORT=18002
export NGINX_PORT=18003

```

Note: Please replace with `host_ip` with you external IP address, do not use localhost.

Note: You can use set_env.sh file with bash command (. setset_env.sh) to set up needed variables.

### Start all the services Docker Containers

> Before running the docker compose command, you need to be in the folder that has the docker compose yaml file

```bash
cd GenAIExamples/VisualQnA/docker_compose/amd/gpu/rocm
```

```bash
docker compose -f compose.yaml up -d
```

### Validate Microservices

Follow the instructions to validate MicroServices.

> Note: If you see an "Internal Server Error" from the `curl` command, wait a few minutes for the microserver to be ready and then try again.

1. LLM Microservice

```bash
http_proxy="" curl http://${host_ip}:9399/v1/lvm -XPOST -d '{"image": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "prompt":"What is this?"}' -H 'Content-Type: application/json'
```

2. MegaService

```bash
curl http://${host_ip}:8888/v1/visualqna -H "Content-Type: application/json" -d '{
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What'\''s in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://www.ilankelman.org/stopsigns/australia.jpg"
}
}
]
}
],
"max_tokens": 300
}'
```

## 🚀 Launch the UI

To access the frontend, open the following URL in your browser: http://{host_ip}:5173. By default, the UI runs on port 5173 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the `compose.yaml` file as shown below:

```yaml
visualqna-gaudi-ui-server:
image: opea/visualqna-ui:latest
...
ports:
- "80:5173"
```
99 changes: 99 additions & 0 deletions VisualQnA/docker_compose/amd/gpu/rocm/compose.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
# Copyright (C) 2024 Advanced Micro Devices, Inc.
# SPDX-License-Identifier: Apache-2.0

services:
visualqna-llava-tgi-service:
image: ghcr.io/huggingface/text-generation-inference:2.4.1-rocm
container_name: visualqna-tgi-service
ports:
- "${VISUALQNA_TGI_SERVICE_PORT:-8399}:80"
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
TGI_LLM_ENDPOINT: "http://${HOST_IP}:${VISUALQNA_TGI_SERVICE_PORT}"
HUGGINGFACEHUB_API_TOKEN: ${VISUALQNA_HUGGINGFACEHUB_API_TOKEN}
HUGGING_FACE_HUB_TOKEN: ${VISUALQNA_HUGGINGFACEHUB_API_TOKEN}
volumes:
- "/var/opea/visualqna-service/data:/data"
shm_size: 64g
devices:
- /dev/kfd:/dev/kfd
- /dev/dri/:/dev/dri/
cap_add:
- SYS_PTRACE
group_add:
- video
security_opt:
- seccomp:unconfined
ipc: host
command: --model-id ${LVM_MODEL_ID} --max-input-length 4096 --max-total-tokens 8192
lvm-tgi:
image: ${REGISTRY:-opea}/lvm-tgi:${TAG:-latest}
container_name: lvm-tgi-server
depends_on:
- visualqna-llava-tgi-service
ports:
- "9399:9399"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
LVM_ENDPOINT: ${LVM_ENDPOINT}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
restart: unless-stopped
visualqna-rocm-backend-server:
image: ${REGISTRY:-opea}/visualqna:${TAG:-latest}
container_name: visualqna-rocm-backend-server
depends_on:
- visualqna-llava-tgi-service
- lvm-tgi
ports:
- "${BACKEND_SERVICE_PORT:-8888}:8888"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
- LVM_SERVICE_HOST_IP=${LVM_SERVICE_HOST_IP}
ipc: host
restart: always
visualqna-rocm-ui-server:
image: ${REGISTRY:-opea}/visualqna-ui:${TAG:-latest}
container_name: visualqna-rocm-ui-server
depends_on:
- visualqna-rocm-backend-server
ports:
- "${FRONTEND_SERVICE_PORT:-5173}:5173"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- BACKEND_BASE_URL=${BACKEND_SERVICE_ENDPOINT}
ipc: host
restart: always
visualqna-nginx-server:
image: ${REGISTRY:-opea}/nginx:${TAG:-latest}
container_name: visualqna-rocm-nginx-server
depends_on:
- visualqna-rocm-backend-server
- visualqna-rocm-ui-server
ports:
- "${NGINX_PORT:-80}:80"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- FRONTEND_SERVICE_IP=${HOST_IP}
- FRONTEND_SERVICE_PORT=${FRONTEND_SERVICE_PORT}
- BACKEND_SERVICE_NAME=${BACKEND_SERVICE_NAME}
- BACKEND_SERVICE_IP=${HOST_IP}
- BACKEND_SERVICE_PORT=${BACKEND_SERVICE_PORT}
ipc: host
restart: always

networks:
default:
driver: bridge
22 changes: 22 additions & 0 deletions VisualQnA/docker_compose/amd/gpu/rocm/set_env.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
#!/usr/bin/env bash

# Copyright (C) 2024 Advanced Micro Devices, Inc
# SPDX-License-Identifier: Apache-2.0

export HOST_IP=${Your_host_ip_address}
export VISUALQNA_TGI_SERVICE_PORT="8399"
export VISUALQNA_HUGGINGFACEHUB_API_TOKEN=${Your_HUGGINGFACEHUB_API_TOKEN}
export VISUALQNA_CARD_ID="card1"
export VISUALQNA_RENDER_ID="renderD136"
export LVM_MODEL_ID="Xkev/Llama-3.2V-11B-cot"
export LVM_ENDPOINT="http://${HOST_IP}:8399"
export LVM_SERVICE_PORT=9399
export MEGA_SERVICE_HOST_IP=${HOST_IP}
export LVM_SERVICE_HOST_IP=${HOST_IP}
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:${BACKEND_SERVICE_PORT}/v1/visualqna"
export FRONTEND_SERVICE_IP=${HOST_IP}
export FRONTEND_SERVICE_PORT=18001
export BACKEND_SERVICE_NAME=visualqna
export BACKEND_SERVICE_IP=${HOST_IP}
export BACKEND_SERVICE_PORT=18002
export NGINX_PORT=18003
Loading
Loading