Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add example for AudioQnA deploy in AMD ROCm #1147

153 changes: 153 additions & 0 deletions AudioQnA/docker_compose/amd/gpu/rocm/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
# Build Mega Service of AudioQnA on AMD ROCm GPU

This document outlines the deployment process for a AudioQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice
pipeline on server on AMD ROCm GPU platform.

Quick Start Deployment Steps:

1. Set up the environment variables.
2. Run Docker Compose.
3. Consume the ChatQnA Service.

## 1) 🚀 Set the environment variables
artem-astafev marked this conversation as resolved.
Show resolved Hide resolved

Before starting the services with `docker compose`, you have to recheck the following environment variables.

```bash
export host_ip=<your External Public IP> # export host_ip=$(hostname -I | awk '{print $1}')
export HUGGINGFACEHUB_API_TOKEN=<your HF token>

export TGI_LLM_ENDPOINT=http://$host_ip:3006
Spycsh marked this conversation as resolved.
Show resolved Hide resolved
export LLM_MODEL_ID=Intel/neural-chat-7b-v3-3

export ASR_ENDPOINT=http://$host_ip:7066
export TTS_ENDPOINT=http://$host_ip:7055

export MEGA_SERVICE_HOST_IP=${host_ip}
export ASR_SERVICE_HOST_IP=${host_ip}
export TTS_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP=${host_ip}

export ASR_SERVICE_PORT=3001
export TTS_SERVICE_PORT=3002
export LLM_SERVICE_PORT=3007
```

## 2) 🚀 Start the MegaService

```bash
cd GenAIExamples/AudioQnA/docker_compose/amd/gpu/rocm/
docker compose up -d
```

In following cases, you could build docker image from source by yourself.

- Failed to download the docker image.
- If you want to use a specific version of Docker image.

Please refer to 'Build Docker Images' in below.

## 3) 🚀 Consume the AudioQnA Service

Test the AudioQnA megaservice by recording a .wav file, encoding the file into the base64 format, and then sending the
base64 string to the megaservice endpoint. The megaservice will return a spoken response as a base64 string. To listen
to the response, decode the base64 string and save it as a .wav file.

```bash
curl http://${host_ip}:3008/v1/audioqna \
-X POST \
-d '{"audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA", "max_tokens":64}' \
-H 'Content-Type: application/json' | sed 's/^"//;s/"$//' | base64 -d > output.wav
```

## 🚀 Build Docker images

### 1. Source Code install GenAIComps

```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
```

### 2. Build ASR Image

```bash
docker build -t opea/whisper:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/asr/whisper/dependency/Dockerfile .


docker build -t opea/asr:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/asr/whisper/Dockerfile .
```

### 3. Build LLM Image

```bash
docker build --no-cache -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
```

### 4. Build TTS Image

```bash
docker build -t opea/speecht5:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/tts/speecht5/dependency/Dockerfile .

docker build -t opea/tts:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/tts/speecht5/Dockerfile .
```

### 6. Build MegaService Docker Image

To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `audioqna.py` Python script. Build the MegaService Docker image using the command below:

```bash
git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/AudioQnA/
docker build --no-cache -t opea/audioqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
```

Then run the command `docker images`, you will have following images ready:

1. `opea/whisper:latest`
2. `opea/asr:latest`
3. `opea/llm-tgi:latest`
4. `opea/speecht5:latest`
5. `opea/tts:latest`
6. `opea/audioqna:latest`

## 🚀 Test MicroServices

```bash
# whisper service
curl http://${host_ip}:7066/v1/asr \
-X POST \
-d '{"audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \
-H 'Content-Type: application/json'

# asr microservice
curl http://${host_ip}:3001/v1/audio/transcriptions \
-X POST \
-d '{"byte_str": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \
-H 'Content-Type: application/json'

# tgi service
curl http://${host_ip}:3006/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \
-H 'Content-Type: application/json'

# llm microservice
curl http://${host_ip}:3007/v1/chat/completions\
-X POST \
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":false}' \
-H 'Content-Type: application/json'

# speecht5 service
curl http://${host_ip}:7055/v1/tts \
-X POST \
-d '{"text": "Who are you?"}' \
-H 'Content-Type: application/json'

# tts microservice
curl http://${host_ip}:3002/v1/audio/speech \
-X POST \
-d '{"text": "Who are you?"}' \
-H 'Content-Type: application/json'

```
110 changes: 110 additions & 0 deletions AudioQnA/docker_compose/amd/gpu/rocm/compose.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
# Copyright (C) 2024 Advanced Micro Devices, Inc.
# SPDX-License-Identifier: Apache-2.0

services:
whisper-service:
image: ${REGISTRY:-opea}/whisper:${TAG:-latest}
container_name: whisper-service
ports:
- "7066:7066"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
restart: unless-stopped
asr:
image: ${REGISTRY:-opea}/asr:${TAG:-latest}
container_name: asr-service
ports:
- "3001:9099"
ipc: host
environment:
ASR_ENDPOINT: ${ASR_ENDPOINT}
speecht5-service:
image: ${REGISTRY:-opea}/speecht5:${TAG:-latest}
container_name: speecht5-service
ports:
- "7055:7055"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
restart: unless-stopped
tts:
image: ${REGISTRY:-opea}/tts:${TAG:-latest}
container_name: tts-service
ports:
- "3002:9088"
ipc: host
environment:
TTS_ENDPOINT: ${TTS_ENDPOINT}
tgi-service:
image: ghcr.io/huggingface/text-generation-inference:2.3.1-rocm
container_name: tgi-service
ports:
- "3006:80"
volumes:
- "./data:/data"
shm_size: 1g
devices:
- /dev/kfd:/dev/kfd
- /dev/dri/card1:/dev/dri/card1
- /dev/dri/renderD136:/dev/dri/renderD136
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
command: --model-id ${LLM_MODEL_ID}
cap_add:
- SYS_PTRACE
group_add:
- video
security_opt:
- seccomp:unconfined
ipc: host
llm:
image: ${REGISTRY:-opea}/llm-tgi:${TAG:-latest}
container_name: llm-tgi-server
depends_on:
- tgi-service
ports:
- "3007:9000"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
TGI_LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
restart: unless-stopped
audioqna-backend-server:
image: ${REGISTRY:-opea}/audioqna:${TAG:-latest}
container_name: audioqna-xeon-backend-server
depends_on:
- asr
- llm
- tts
ports:
- "3008:8888"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
- ASR_SERVICE_HOST_IP=${ASR_SERVICE_HOST_IP}
- ASR_SERVICE_PORT=${ASR_SERVICE_PORT}
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
- LLM_SERVICE_PORT=${LLM_SERVICE_PORT}
- TTS_SERVICE_HOST_IP=${TTS_SERVICE_HOST_IP}
- TTS_SERVICE_PORT=${TTS_SERVICE_PORT}
ipc: host
restart: always

networks:
default:
driver: bridge
26 changes: 26 additions & 0 deletions AudioQnA/docker_compose/amd/gpu/rocm/set_env.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
#!/usr/bin/env bash set_env.sh

# Copyright (C) 2024 Advanced Micro Devices, Inc.
# SPDX-License-Identifier: Apache-2.0


# export host_ip=<your External Public IP> # export host_ip=$(hostname -I | awk '{print $1}')

export host_ip="192.165.1.21"
export HUGGINGFACEHUB_API_TOKEN=${YOUR_HUGGINGFACEHUB_API_TOKEN}
# <token>

export TGI_LLM_ENDPOINT=http://$host_ip:3006
export LLM_MODEL_ID=Intel/neural-chat-7b-v3-3

export ASR_ENDPOINT=http://$host_ip:7066
export TTS_ENDPOINT=http://$host_ip:7055

export MEGA_SERVICE_HOST_IP=${host_ip}
export ASR_SERVICE_HOST_IP=${host_ip}
export TTS_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP=${host_ip}

export ASR_SERVICE_PORT=3001
export TTS_SERVICE_PORT=3002
export LLM_SERVICE_PORT=3007
101 changes: 101 additions & 0 deletions AudioQnA/tests/test_compose_on_rocm.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
#!/bin/bash
# Copyright (C) 2024 Advanced Micro Devices, Inc.
# SPDX-License-Identifier: Apache-2.0

set -e
artem-astafev marked this conversation as resolved.
Show resolved Hide resolved
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}

WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
export PATH="/home/huggingface/miniconda3/bin:$PATH"

function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../

echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="audioqna whisper asr llm-tgi speecht5 tts"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
echo "docker pull ghcr.io/huggingface/text-generation-inference:2.3.1-rocm"
docker pull ghcr.io/huggingface/text-generation-inference:2.3.1-rocm
docker images && sleep 1s
}

function start_services() {
cd $WORKPATH/docker_compose/amd/gpu/rocm/
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export TGI_LLM_ENDPOINT=http://$ip_address:3006
export LLM_MODEL_ID=Intel/neural-chat-7b-v3-3

export ASR_ENDPOINT=http://$ip_address:7066
export TTS_ENDPOINT=http://$ip_address:7055

export MEGA_SERVICE_HOST_IP=${ip_address}
export ASR_SERVICE_HOST_IP=${ip_address}
export TTS_SERVICE_HOST_IP=${ip_address}
export LLM_SERVICE_HOST_IP=${ip_address}

export ASR_SERVICE_PORT=3001
export TTS_SERVICE_PORT=3002
export LLM_SERVICE_PORT=3007

# sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env

# Start Docker Containers
docker compose up -d > ${LOG_PATH}/start_services_with_compose.log
n=0
until [[ "$n" -ge 100 ]]; do
docker logs tgi-service > $LOG_PATH/tgi_service_start.log
if grep -q Connected $LOG_PATH/tgi_service_start.log; then
break
fi
sleep 5s
n=$((n+1))
done
}
function validate_megaservice() {
result=$(http_proxy="" curl http://${ip_address}:3008/v1/audioqna -XPOST -d '{"audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA", "max_tokens":64}' -H 'Content-Type: application/json')
echo $result
if [[ $result == *"AAA"* ]]; then
echo "Result correct."
else
docker logs whisper-service > $LOG_PATH/whisper-service.log
docker logs asr-service > $LOG_PATH/asr-service.log
docker logs speecht5-service > $LOG_PATH/tts-service.log
docker logs tts-service > $LOG_PATH/tts-service.log
docker logs tgi-service > $LOG_PATH/tgi-service.log
docker logs llm-tgi-server > $LOG_PATH/llm-tgi-server.log
docker logs audioqna-xeon-backend-server > $LOG_PATH/audioqna-xeon-backend-server.log

echo "Result wrong."
exit 1
fi

}

function stop_docker() {
cd $WORKPATH/docker_compose/amd/gpu/rocm/
docker compose stop && docker compose rm -f
}

function main() {

stop_docker
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
start_services

validate_megaservice
# validate_frontend

stop_docker
echo y | docker system prune

}

main
Loading